【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1.
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在該二次函數(shù)的圖象上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點(diǎn),點(diǎn)T為該二次函數(shù)圖象上位于直線OC下方的動(dòng)點(diǎn),過點(diǎn)T作直線TM⊥OC,垂足為點(diǎn)M,且M在線段OC上(不與O、C重合),過點(diǎn)T作直線TN∥y軸交OC于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過程中, 為常數(shù),試確定k的值.
【答案】
(1)
解:∵二次函數(shù)y=ax2+bx的圖象過點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1,
則有 解得
∴二次函數(shù)y=x2﹣2x
(2)
解:由(1)得,B(1,﹣1),
∵A(﹣1,3),
∴直線AB解析式為y=﹣2x+1,AB=2 ,
設(shè)點(diǎn)Q(m,0),P(n,n2﹣2n)
∵以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,
①當(dāng)AB為對(duì)角線時(shí),根據(jù)中點(diǎn)坐標(biāo)公式得,則有 ,解得 或
∴P(1+ ,2)和(1﹣ ,2)
②當(dāng)AB為邊時(shí),根據(jù)中點(diǎn)坐標(biāo)公式得 解得 或
∴P(1+ ,4)或(1﹣ ,4).
(3)
解:設(shè)T(m,m2﹣2m),∵TM⊥OC,
∴可以設(shè)直線TM為y=﹣ x+b,則m2﹣2m=﹣ m+b,b=m2﹣2m+ ,
由 解得 ,
∴OM= = ,ON=m ,
∴ = ,
∴k= 時(shí), = .
∴當(dāng)k= 時(shí),點(diǎn)T運(yùn)動(dòng)的過程中, 為常數(shù).本題考查二次函數(shù)綜合題,平行四邊形的判定和性質(zhì),中點(diǎn)坐標(biāo)公式等知識(shí),解題
【解析】(1)利用待定系數(shù)法即可解決問題(2)①當(dāng)AB為對(duì)角線時(shí),根據(jù)中點(diǎn)坐標(biāo)公式,列出方程組解決問題.②當(dāng)AB為邊時(shí),根據(jù)中點(diǎn)坐標(biāo)公式列出方程組解決問題.(3)設(shè)T(m,m2﹣2m),由TM⊥OC,可以設(shè)直線TM為y=﹣ x+b,則m2﹣2m=﹣ m+b,b=m2﹣2m+ ,求出點(diǎn)M、N坐標(biāo),求出OM、ON,根據(jù) 列出等式,即可解決問題.本題的關(guān)鍵是利用參數(shù),方程組解決問題,學(xué)會(huì)轉(zhuǎn)化的思想,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某倉儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為2a、寬為2b的長方形(其中a,b均為正數(shù),且a>b),沿圖中虛線用剪刀均勻分成四塊相同小長方形,然后按圖2方式拼成一個(gè)大正方形.
(1)你認(rèn)為圖2中大正方形的邊長為 a+b ;小正方形(陰影部分)的邊長為 .(用含a、b的代數(shù)式表示)
(2)仔細(xì)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,(a-b)2,ab所表示的圖形面積之間的相等關(guān)系,并選取適合a、b的數(shù)值加以驗(yàn)證.
(3)已知a+b=7,ab=6.求代數(shù)式(a-b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④ <a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( 。
A.①③
B.①③④
C.②④⑤
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,則P,Q的大小關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)14+24﹣8
(2)(﹣3)﹣(﹣2)+(﹣4)
(3)﹣23÷×(﹣)2
(4)(+﹣)×(﹣36)
(5)﹣14﹣×[2﹣(﹣3)2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 對(duì)于以下結(jié)論:
①abc>0;②a+3b+2c≤0;③對(duì)于自變量x的任意一個(gè)取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一個(gè)實(shí)數(shù)x0 , 使得x0=﹣ ,
其中結(jié)論錯(cuò)誤的是 (只填寫序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn),連結(jié)OA,OB,過A作AE⊥x軸于點(diǎn)E,交OB于點(diǎn)F,設(shè)點(diǎn)A的橫坐標(biāo)為m.
(1)b=(用含m的代數(shù)式表示);
(2)若S△OAF+S四邊形EFBC=4,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】表為小潔打算在某電信公司購買一支MAT手機(jī)與搭配一個(gè)門號(hào)的兩種方案.此公司每個(gè)月收取通話費(fèi)與月租費(fèi)的方式如下:若通話費(fèi)超過月租費(fèi),只收通話費(fèi);若通話費(fèi)不超過月租費(fèi),只收月租費(fèi).若小潔每個(gè)月的通話費(fèi)均為x元,x為400到600之間的整數(shù),則在不考慮其他費(fèi)用并使用兩年的情況下,x至少為多少才會(huì)使得選擇乙方案的總花費(fèi)比甲方案便宜?( 。
甲方案 | 乙方案 | |
門號(hào)的月租費(fèi)(元) | 400 | 600 |
MAT手機(jī)價(jià)格(元) | 15000 | 13000 |
注意事項(xiàng):以上方案兩年內(nèi)不可變更月租費(fèi) |
A.500
B.516
C.517
D.600
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com