【題目】已知OP平分∠AOB,點(diǎn)QOP上,點(diǎn)MOA上,且點(diǎn)Q,M均不與點(diǎn)O重合.OB上確定點(diǎn)N,使QN =QM,則滿足條件的點(diǎn)N的個(gè)數(shù)為(

A.1 個(gè)B.2個(gè)C.12個(gè)D.無數(shù)個(gè)

【答案】C

【解析】

分兩種情況:QMOAQM不垂直OA,當(dāng)QMOA時(shí),N有一點(diǎn);當(dāng)QM不垂直OA時(shí),N有兩點(diǎn).故可得解.

當(dāng)QMOA時(shí),N有一點(diǎn),如圖所示,

過點(diǎn)QQNOB,垂足為N,

OP平分∠AOB,QMOA,

QM=QN;

當(dāng)QM不垂直OA時(shí),N有兩點(diǎn),如圖所示,

OA,OB上分別截取OM=ON1,連接QM,QN1,

OP平分∠AOB,

∴∠MOQ=N1OQ

MOQN1OQ中,

∴△MOQ≌△N1OQ

QM=QN1;

作∠QN1N2=QN2N1,則有QN1=QN2,

QM=QN2.

所以,滿足條件的點(diǎn)N的個(gè)數(shù)為1個(gè)或2個(gè).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:

為響應(yīng)市政府綠色出行的號(hào)召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他用騎公共自行車的方式平均每小時(shí)行駛的路程比他用自駕車的方式平均每小時(shí)行駛的路程少45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車方式所用的時(shí)間是自駕車方式所用的時(shí)間的4倍.小張用騎公共自行車方式上班平均每小時(shí)行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=C,AB=16cm,BC=12cmDAB的中點(diǎn).若點(diǎn)P在線段BC上以4cm/s的速度由BC運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上以a(cm/s)的速度由CA運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0≤t≤3)

1)用關(guān)于t的代數(shù)式表示PC的長(zhǎng)度.

2)若點(diǎn)PQ的運(yùn)動(dòng)速度相等,經(jīng)過1s后,△BPD與△CQP是否全等?請(qǐng)說明理由.

3)若點(diǎn)PQ的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度a為多少時(shí),能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營(yíng)運(yùn)規(guī)律如下:當(dāng)x不超過100元時(shí),觀光車能全部租出;當(dāng)x超過100元時(shí),每輛車的日租金每增加5元,租出去的觀光車就會(huì)減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.

1)優(yōu)惠活動(dòng)期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入管理費(fèi))

2)當(dāng)每輛車的日租金為多少元時(shí),每天的凈收入最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣x+b與拋物線的另一個(gè)交點(diǎn)為D.

(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;

(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);

(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)D后停止,問當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中所用時(shí)間最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在三角形紙片ABC,B90°,∠A30°,AC4,點(diǎn)EAC上,AE3.將三角形紙片按圖1方式折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)落在AB的延長(zhǎng)線上,折痕為ED,BC于點(diǎn)F.

1)求∠CFE的度數(shù);

2)如圖2,繼續(xù)將紙片沿BF折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)為,DE于點(diǎn)G .求線段DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,點(diǎn)DE分別在AB,AC上,補(bǔ)充下列一個(gè)條件后,不能判斷△ABE ≌△ACD的是

A.∠B=∠CB.AD=AEC.∠BDC=∠CEBD.BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某建筑公司甲、乙兩個(gè)工程隊(duì)共同參與一項(xiàng)改造工程.已知甲隊(duì)單獨(dú)完成這項(xiàng)工程的時(shí)間是乙隊(duì)單獨(dú)完成這項(xiàng)工程時(shí)間的1.5倍,由于乙隊(duì)還有其他任務(wù),先由甲隊(duì)單獨(dú)做45天后,再由甲、乙兩隊(duì)合做30天,完成了該項(xiàng)改造工程任務(wù).

1)求甲、乙兩隊(duì)單獨(dú)完成改造工程任務(wù)各需多少天;

2)這項(xiàng)改造工程共投資240萬元,如果按完成的工程量付款,那么甲、乙兩隊(duì)可獲工程款各多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:RtABC的斜邊長(zhǎng)為5,斜邊上的高為2,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合(其中OAOB),直角頂點(diǎn)C落在y軸正半軸上(如圖1).

(1)求線段OA、OB的長(zhǎng)和經(jīng)過點(diǎn)A、B、C的拋物線的關(guān)系式.

(2)如圖2,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n>0),連接DP交BC于點(diǎn)E.

當(dāng)BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).

又連接CD、CP(如圖3),CDP是否有最大面積?若有,求出CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo);若沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案