【題目】甲、乙兩車同時(shí)從A地出發(fā),勻速開往B地.甲車行駛到B地后立即沿原路線以原速度返回A地,到達(dá)A地后停止運(yùn)動(dòng);當(dāng)甲車到達(dá)A地時(shí),乙車恰好到達(dá)B地,并停止運(yùn)動(dòng).已知甲車的速度為150km/h.設(shè)甲車出發(fā)xh后,甲、乙兩車之間的距離為ykm,圖中的折線OMNQ表示了整個(gè)運(yùn)動(dòng)過程中yx之間的函數(shù)關(guān)系.

1A、B兩地的距離是______km,乙車的速度是______km/h;

2)指出點(diǎn)M的實(shí)際意義,并求線段MN所表示的yx之間的函數(shù)表達(dá)式;

3)當(dāng)兩車相距150km時(shí),直接寫出x的值.

【答案】(1)600,75;(2)線段MN所表示的y與x之間的函數(shù)表達(dá)式是y=-225x+1200(4≤x≤);(3)2、 或6.

【解析】

1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得A、B兩地的距離和乙車的速度;

2)根據(jù)題意可以寫出點(diǎn)M的實(shí)際意義,并求得線段MN所表示的yx之間的函數(shù)表達(dá)式;

3)根據(jù)題意可以求得各段對(duì)應(yīng)的函數(shù)解析式,從而可以解答本題.

解:(1A、B兩地的距離是:150×8÷2=600km,

乙車的速度為:600÷8=75km/h,

故答案為:600,75

2)點(diǎn)M的實(shí)際意義是此時(shí)甲車到達(dá)B地,

點(diǎn)M的坐標(biāo)為(4300),

設(shè)點(diǎn)N的橫坐標(biāo)為n,則150n+75n=600×2,得n=

∴點(diǎn)N的坐標(biāo)為(,0),

設(shè)線段MN所表示的yx之間的函數(shù)表達(dá)式是y=kx+b,

,得 ,

即線段MN所表示的yx之間的函數(shù)表達(dá)式是y=-225x+12004≤x≤);

3)設(shè)OM段對(duì)應(yīng)的函數(shù)解析式為y=ax,

300=4a,得a=75,

OM段對(duì)應(yīng)的函數(shù)解析式為y=75x,

75x=150,得x=2,

MN段對(duì)應(yīng)的函數(shù)解析式為y=-225x+1200,

∴當(dāng)-225x+1200=150時(shí),得x=,

設(shè)過點(diǎn)N0)、Q8,600)的函數(shù)解析式為y=cx+d,

,得,

y=225x-1200,

225x-1200=150,得x=6,

答:當(dāng)兩車相距150km時(shí),x的值是26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀、填空并將說理過程補(bǔ)充完整:如圖,已知點(diǎn)D、E分別在△ABC的邊AB、AC上,且∠AED=∠B,延長(zhǎng)DEBC的延長(zhǎng)線交于點(diǎn)F,∠BAC和∠BFD的角平分線交于點(diǎn)G.那么AGFG的位置關(guān)系如何?為什么?

解:AGFG.將AG、DF的交點(diǎn)記為點(diǎn)P,延長(zhǎng)AGBC于點(diǎn)Q

因?yàn)?/span>AG、FG分別平分∠BAC和∠BFD(已知)

所以∠BAG      (角平分線定義)

又因?yàn)椤?/span>FPQ   +∠AED,      +∠B

(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和)

AED=∠B(已知)

所以∠FPQ   (等式性質(zhì))

(請(qǐng)完成以下說理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,A、B、C、D在同一直線上,ABCDDEAF,若要使△ACF≌△DBE,則還需要補(bǔ)充一個(gè)條件:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是甲、乙兩人從同一地點(diǎn)出發(fā)后,路程隨時(shí)間變化的圖象.

(1)此變化過程中,___________ 是自變量,___________ 是因變量.

(2)甲的速度 ___________ 乙的速度.(填“大于”、“等于”、或“小于”

(3)甲與乙 ___________ 時(shí)相遇.

(4)甲比乙先走 ___________ 小時(shí).

(5)9時(shí)甲在乙的 ___________ (填“前面”、“后面”、“相同位置”).

(6)路程為150km,甲行駛了___________ 小時(shí),乙行駛了___________ 小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn),∠BAC的平分線AD⊙O于點(diǎn)D,過點(diǎn)D垂直于AC的直線交AC的延長(zhǎng)線于點(diǎn)E

1)求證:DE⊙O的切線;

2)如圖AD=5,AE=4,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市對(duì)居民生活用水按以下規(guī)定收取每月的水費(fèi):家庭月用水量如果不超過8噸,按每噸2.5元收費(fèi);如果超過8噸,未超過的部分仍按每噸2.5元收取,而超過部分則按每噸4元收取.

1)設(shè)某家庭月用水量為x噸,水費(fèi)為y元,請(qǐng)寫出yx之間的函數(shù)解析式,并在給定的平面直角坐標(biāo)系中,畫出該函數(shù)的圖象;

2)如果小明家按題中規(guī)定今年3月份應(yīng)繳水費(fèi)34元,那么今年3月份小明家用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題背景

在數(shù)學(xué)活動(dòng)課上,張老師要求同學(xué)們拿兩張大小不同的矩形紙片進(jìn)行旋轉(zhuǎn)變換探究活動(dòng).如圖 1,在矩形紙片ABCD 和矩形紙片EFGH中,AB1,AD2,且FEADFGAB,點(diǎn)E AD 的中點(diǎn),矩形紙片 EFGH 以點(diǎn)E 為旋轉(zhuǎn)中心進(jìn)行逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中會(huì)產(chǎn)生怎樣的數(shù)量關(guān)系,提出恰當(dāng)?shù)臄?shù)學(xué)問題并加以解決.

解決問題

下面是三個(gè)學(xué)習(xí)小組提出的數(shù)學(xué)問題,請(qǐng)你解決這些問題.

1奮進(jìn)小組提出的問題是:如圖 1,當(dāng) EF AB 相交于點(diǎn) MEH BC 相交于點(diǎn) N 時(shí),求證:EM=EN

2雄鷹小組提出的問題是:在(1)的條件下,當(dāng) AM=CN 時(shí),AM BM 有怎樣的數(shù)量關(guān)系,請(qǐng)說明理由.

3創(chuàng)新小組提出的問題是:若矩形 EFGH 繼續(xù)以點(diǎn) E 為旋轉(zhuǎn)中心進(jìn)行逆時(shí)針旋轉(zhuǎn),當(dāng) 時(shí),請(qǐng)你在圖 2 中畫出旋轉(zhuǎn)后的示意圖,并求出此時(shí) EF 將邊 BC 分成的兩條線段的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案