精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知點的直徑延長線上,點上,過,與的延長線相交于,的切線,,

1)求證:;

2)求的長;

3)若的平分線與交于點,的內心,求的長.

【答案】1)見解析;(2;(3

【解析】

1)利用同角的余角相等得出∠E=ECD,從而得出結論;

2)利用直角△OCD和直角△ADE中的勾股定理列出方程解得BD的長;

3)連接,,,根據平分求出,利用同弧所對的圓周角相等得出,從而得出,即FP=FB.

解:(1)證明:連接

的切線,

,

,

,

2)∵,

,

∴由勾股定理可得,

,

∴由勾股定理可得,,

,

(舍去).

3)連接,,,

平分,

,

為直徑,,

,

的內心,

,

,

,

,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點A1,0),已知拋物線y=﹣x2+mx2mm是常數),頂點為P

1)當拋物線經過點A時,求頂點P坐標;

2)等腰RtAOB,點B在第四象限,且OAOB.當拋物線與線段OB有且僅有兩個公共點時,求m滿足的條件;

3)無論m取何值,該拋物線都經過定點H.當∠AHP45°,求此拋物線解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C將線段AB分成兩部分,若AC2BCAB(ACBC),則稱點C為線段AB的黃金分割點.某數學興趣小組在進行拋物線課題研究時,由黃金分割點聯想到黃金拋物線,類似地給出黃金拋物線的定義:若拋物線yax2+bx+c,滿足b2ac(b≠0),則稱此拋物線為黃金拋物線.

()若某黃金拋物線的對稱軸是直線x2,且與y軸交于點(08),求y的最小值;

()若黃金拋物線yax2+bx+c(a0)的頂點P(13),把它向下平移后與x軸交于A(+3,0),B(x00),判斷原點是否是線段AB的黃金分割點,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是拋物線的部分圖象,其頂點為,與軸交于點,與軸的一個交點為,連接.以下結論:①;②拋物線經過點;③;④當時, .其中正確的是(

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,平移一條拋物線,如果平移后的新拋物線經過原拋物線頂點,且新拋物線的對稱軸是y軸,那么新拋物線稱為原拋物線的“影子拋物線”.

1)已知原拋物線表達式是,求它的影子拋物線的表達式;

2)已知原拋物線經過點(1,0),且它的影子拋物線的表達式是,求原拋物線的表達式;

3)小明研究后提出:“如果兩條不重合的拋物線交y軸于同一點,且它們有相同的“影子拋物線”,那么這兩條拋物線的頂點一定關于y軸對稱.”你認為這個結論成立嗎?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】423日,為迎接世界讀書日,某書城開展購書有獎活動.顧客每購書滿100元獲得一次摸獎機會,規(guī)則為:一個不透明的袋子中裝有4個小球,小球上分別標有數字1,2,34,它們除所標數字外完全相同,搖勻后同時從中隨機摸出兩個小球,則兩球所標數字之和與獎勵的購書券金額的對應關系如下:

兩球所標數字之和

3

4

5

6

7

獎勵的購書券金額(元)

0

0

30

60

90

1)通過列表或畫樹狀圖的方法計算摸獎一次獲得90元購書券的概率;

2)書城規(guī)定:如果顧客不愿意參加摸獎,那么可以直接獲得30元的購書券.參加摸獎直接獲得購書券兩種方式中,你認為哪種方式對顧客更合算?請通過求平均教的方法說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,AB4,E,F分別是邊AB,AD上的動點,AEDF,連接DE,CF交于點P,過點PPKBC,且PK2,若∠CBK的度數最大時,則BK長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O是矩形ABCD的對角線的交點,E,F,G,H分別是OA,OB,OC,OD上的點,且AE=BF=CG=DH.

(1)求證:四邊形EFGH是矩形;

(2)若E,F,G,H分別是OA,OB,OC,OD的中點,且DG⊥AC,OF=2cm,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,P是邊AD上的一動點,連接BPCP,過點B作射線交線段CP的延長線于點E,交AD邊于點M,且使得∠ABE=∠CBP,如果AB=2,BC=5AP=x,PM=y.

1)說明△ABM∽△APB;并求出y關于x的函數關系式,寫出自變量x的取值范圍;

2)當AP=4時,求sin∠EBP的值;

3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長.

查看答案和解析>>

同步練習冊答案