【題目】如圖,在邊長為6cm的正方形ABCD中,點(diǎn)E、F、G、H分別從點(diǎn)A、B、C、D同時出發(fā),均以1cm/s的速度向點(diǎn)B、C、D、A勻速運(yùn)動,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時,四個點(diǎn)同時停止運(yùn)動,在運(yùn)動過程中,運(yùn)動時間t=_____秒時四邊形EFGH的面積最。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機(jī)摸出1個球,將“摸出黑球”記為事件A,請完成下列表格;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機(jī)摸出1個黑球的概率等于,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旅行社組團(tuán)去外地考察學(xué)習(xí),10人起組團(tuán),每人單價1200元.該旅行社對超過10人的團(tuán)給予優(yōu)惠,即考察團(tuán)每增加一人,每人的單價就降低20元.(每人單價不能低于800元)當(dāng)考察團(tuán)人數(shù)為多少人時,該旅行社可以獲得最大營業(yè)額?最大營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件30元,售價為每件40元,每周可賣出180件;如果每件商品的售價每上漲1元,則每周就會少賣出5件,但每件售價不能高于50元,設(shè)每件商品的售價上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價為多少元時,每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價定為多少元時,每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用一塊長為50cm、寬為30cm的長方形鐵片制作一個無蓋的盒子,若在鐵片的四個角截去四個相同的小正方形,設(shè)小正方形的邊長為xcm.
(1)底面的長AB= cm,寬BC= cm(用含x的代數(shù)式表示)
(2)當(dāng)做成盒子的底面積為300cm2時,求該盒子的容積.
(3)該盒子的側(cè)面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC為弦,點(diǎn)D是弧BC的中點(diǎn),過點(diǎn)D作⊙O的切線交AC的延長線于點(diǎn)E.
(1)判斷DE與AE的位置關(guān)系,并說明理由;
(2)求證:AB=AE+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;
(3)點(diǎn)G是拋物線上的動點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m+1)x+m21=0.
(1)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程兩實數(shù)根分別為x1,x2,且滿足x1+x2+x1x2=5,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com