如圖,已知直線y=ax+b經(jīng)過點(diǎn)A(0,-3),與x軸交于點(diǎn)C,且與雙曲線相交于點(diǎn)B(-4,-精英家教網(wǎng)a),D.
(1)求直線和雙曲線的函數(shù)關(guān)系式;
(2)求△CDO(其中O為原點(diǎn))的面積.
分析:(1)先根據(jù)點(diǎn)A求出反比例函數(shù)的解析式,再根據(jù)反比例解析式求出a的值,即B點(diǎn)坐標(biāo),利用待定系數(shù)法求出一次函數(shù)的解析式;
(2)關(guān)鍵是求出一次函數(shù)和x軸的交點(diǎn)坐標(biāo)和直線與雙曲線的交點(diǎn)D的縱坐標(biāo),即得到△CDO的底和高,從而求出其面積.
解答:解:(1)由已知得
-3=b
-a=-4a+b
,
解之得:
a=-1
b=-3

∴直線的函數(shù)關(guān)系式為y=-x-3.
設(shè)雙曲線的函數(shù)關(guān)系式為:y=
k
x

1=
k
-4
,
∴k=-4.
∴雙曲線的函數(shù)關(guān)系式為y=-
4
x


(2)解方程組
y=-x-3
y=-
4
x
,得
x1=-4
y1=1
,
x2=1
y2=-4

∴D(1,-4).
在y=-x-3中,令y=0,解得x=-3.
∴OC=3.
∴△CDO的面積為
1
2
×3×4=6.
點(diǎn)評(píng):主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式;反比例函數(shù)y=
k
x
中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案