如圖,在四邊形ABCD中,AB=CD,M、N、P、Q分別為AD、BC、BD、AC的中點.試判斷線段MN、PQ的關(guān)系,并加以證明.
MN,PQ互相垂直平分.

試題分析:作輔助線連接PN、QN、QM、PM,顯然PN平行且等于AB,MQ平行且等于CD,PM平行且等于AB,NQ平行且等于AB,因為AB=CD,所以PN=NQ=QM=PM,容易證明四邊形PNQM是菱形,即可得出結(jié)論.
點評:本題關(guān)鍵根據(jù)題意巧妙地作出輔助線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中正確的有(   ).
(1)兩條對角線相等的四邊形是矩形;
(2)有一組鄰邊相等的平行四邊形是菱形;
(3)對角線互相垂直平分的四邊形是正方形;
(4)兩內(nèi)角相等的梯形是等腰梯形.
A.1 B.2  C.3     D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,AC⊥CD,對角線相交于點O, AO=6,BO=10,則AD=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在一個四邊形ABCD中,依次連接各邊的中點得到的四邊形是菱形, 則對角線AC與BD需要滿足條件是  
A.垂直B.相等C.垂直且相等D.不再需要條件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知菱形的兩條對角線分別長為6㎝和8㎝,則此菱形的面積為         cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動點P從A點開始沿AD邊向D以3cm/s的速度運動,動點Q從點C開始沿CB邊向點B以1cm/s的速度運動,點P、Q分別從A、C同時出發(fā),設(shè)運動時間為t (s).
⑴當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動.
①當(dāng)t為何值時,以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個三角形;②當(dāng)t為何值時,四邊形PQCD為等腰梯形.
⑵若點P從點A開始沿射線AD運動,當(dāng)點Q到達(dá)點B時,點P也隨之停止運動.當(dāng)t為何值時,以P、Q、C、D為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在等腰中,,,, 垂足分別為點,連接.試問四邊形是等腰梯形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形中,邊上的中點,相交于點,連接.(注:正方形的四邊相等,四個角都是直角,每一條對角線平分一組對角). 
(1) 在不增加點和線的前提下,直接寫出圖中所有的全等三角形.(不要求證明)
(2) 連接試判斷的位置關(guān)系,并證明你的結(jié)論.
(3)延長于點,試判斷的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下面幾組條件中,能判斷一個四邊形是平行四邊形的是(    )
A.一組對邊相等,一組對邊平行B.兩條對角線互相平分
C.一組對邊平行,一組鄰角相等D.兩條對角線互相垂直

查看答案和解析>>

同步練習(xí)冊答案