【題目】數(shù)軸上與原點(diǎn)之間的距離小于5的表示整數(shù)的點(diǎn)共有 個(gè).

【答案】9
【解析】本題就是大于0小于5的整數(shù)有幾個(gè),可知有四個(gè),它們是1、2、3、4、0、-1、-2、-3、-4;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)軸,掌握數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)甲、乙兩位教師先后從學(xué)校出發(fā),到距學(xué)校10km的培訓(xùn)中心參加新教材培訓(xùn)學(xué)習(xí),圖中I , I分別表示甲、乙兩位教師從學(xué)校到培訓(xùn)中心所走的路程S(km)隨時(shí)間t(分鐘)變化的函數(shù)圖象.
(1)求甲、乙兩位教師的平均速度各是多少?
(2)求乙出發(fā)后追上甲所用的時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動(dòng)點(diǎn).

(1)求拋物線的解析式;

(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上表示—4的點(diǎn)在原點(diǎn)的(
A.右側(cè)
B.左側(cè)
C.原點(diǎn)上
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線與x軸、y軸的交點(diǎn)分別為A、B,將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線AB上,折痕交x軸于點(diǎn)C.

(1)直接寫出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線的解析式;

(2)若拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;

(3)設(shè)拋物線的對(duì)稱軸與直線BC的交點(diǎn)為T,Q為線段BT上一點(diǎn),直接寫出|QA﹣QO|的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各題正確的是(
A.由7x=4x﹣3移項(xiàng)得7x﹣4x=3
B.由 =1+ 去分母得2(2x﹣1)=1+3(x﹣3)
C.由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1
D.由2(x+1)=x+7去括號(hào)、移項(xiàng)、合并同類項(xiàng)得x=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題:
(1)2(m+1)2﹣(2m+1)(2m﹣1);
(2)4x2﹣(﹣2x+3)(﹣2x﹣3);
(3)先化簡(jiǎn),再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲是乙現(xiàn)在的年齡時(shí),乙8歲,乙是甲現(xiàn)在的年齡時(shí),甲26歲,那么( )

A. 甲比乙大6 B. 甲比乙大9

C. 乙比甲大18 D. 乙比甲大34

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線AB與坐標(biāo)軸交于A,B兩點(diǎn),線段OA,OC的長(zhǎng)是方程的兩個(gè)根(OAOC).

(1)求點(diǎn)A,C的坐標(biāo);

(2)直線AB與直線CD交于點(diǎn)E,若點(diǎn)E是線段AB的中點(diǎn),反比例函數(shù)(k0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;

(3)在(2)的條件下,點(diǎn)M在直線CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出滿足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案