【題目】如圖,AMABC的中線,點(diǎn)D是線段AM上一點(diǎn)(不與點(diǎn)A重合).過(guò)點(diǎn)DKDAB,交BC于點(diǎn)K,過(guò)點(diǎn)CCEAM,交KD的延長(zhǎng)線于點(diǎn)E,連接AEBD

1)求證:ABM∽△EKC;

2)求證:ABCKEKCM

3)判斷線段BD、AE的關(guān)系,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)BDAE,BDAE.理由見(jiàn)解析.

【解析】

1)根據(jù)平行線的性質(zhì)得到∠ABC=EKC,∠AMB=ECK,得到ABM∽△EKC

2)根據(jù)相似三角形的性質(zhì)得到比例式,計(jì)算即可;

3)根據(jù)相似三角形的性質(zhì)得到DE=AB,得到四邊形ABDE是平行四邊形,根據(jù)平行是四邊形的性質(zhì)解答.

1)∵KDAB,

∴∠ABC=∠EKC,

CEAM,

∴∠AMB=∠ECK,

∴△ABM∽△EKC;

2)∵△ABM∽△EKC

,

ABCKEKBM,

AM是△ABC的中線,

BMCM,

ABCKEKCM;

3)解:BDAEBDAE,

CEAM

,

,

DEAB,

DEAB,

∴四邊形ABDE是平行四邊形,

BDAE,BDAE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,給定銳角三角形ABC,小明希望畫(huà)正方形DEFG,使D,E位于邊BC上,F,G分別位于邊ACAB上,他發(fā)現(xiàn)直接畫(huà)圖比較困難,于是他先畫(huà)了一個(gè)正方形HIJK,使得點(diǎn)HI位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時(shí)他發(fā)現(xiàn)可以將正方形HIJK通過(guò)放大或縮小得到滿足要求的正方形DEFG.

閱讀以上材料,回答小明接下來(lái)研究的以下問(wèn)題:

(1)如圖2,給定銳角三角形ABC,畫(huà)出所有長(zhǎng)寬比為21的長(zhǎng)方形DEFG,使D,E位于邊BC上,F,G分別位于邊AC,AB上.

(2)已知三角形ABC的面積為36BC12,在第(1)問(wèn)的條件下,求長(zhǎng)方形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD中,BC=3,點(diǎn)E、F分別是CB、CD延長(zhǎng)線上的點(diǎn),DF=BE,連接AE、AF,過(guò)點(diǎn)A作AHED于H點(diǎn).

(1)求證:ADF≌△ABE;

(2)若BE=1,求tanAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5x5.5,另外每天還需支付其他各項(xiàng)費(fèi)用80元.

銷售單價(jià)x(元)

3.5

5.5

銷售量y(袋)

280

120

1)請(qǐng)直接寫(xiě)出yx之間的函數(shù)關(guān)系式;

2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?

3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2)延長(zhǎng)CBx軸于點(diǎn)A1,作正方形A1B1C1C;延長(zhǎng)C1B1x 軸于點(diǎn)A2,作正方形A2B2C2C1,按這樣的規(guī)律進(jìn)行下去,第2018個(gè)正方形的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtACB中,∠C=90°,AC=BC,一直角三角板的直角頂角OAB邊的中點(diǎn)上,這塊三角板繞O點(diǎn)旋轉(zhuǎn),兩條直角邊始終與AC、BC邊分別相交于E、F,連接EF,則在運(yùn)動(dòng)過(guò)程中,OEFABC的關(guān)系是( 。

A. 一定相似 B. 當(dāng)EAC中點(diǎn)時(shí)相似

C. 不一定相似 D. 無(wú)法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+ x+cx軸的負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B,連結(jié)AB,點(diǎn)C(6,)在拋物線上,直線ACy軸交于點(diǎn)D.

(1)求c的值及直線AC的函數(shù)表達(dá)式;

(2)點(diǎn)Px軸正半軸上,點(diǎn)Qy軸正半軸上,連結(jié)PQ與直線AC交于點(diǎn)M,連結(jié)MO并延長(zhǎng)交AB于點(diǎn)N,若MPQ的中點(diǎn).

①求證:△APM∽△AON;

②設(shè)點(diǎn)M的橫坐標(biāo)為m,求AN的長(zhǎng)(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與軸的一個(gè)交點(diǎn)為 ,與軸的交點(diǎn)為,過(guò)的直線為.

1)求二次函數(shù)的解析式及點(diǎn)的坐標(biāo);

2)直接寫(xiě)出滿足時(shí),的取值 ;

3)在兩坐標(biāo)軸上是否存在點(diǎn),使得是以為底邊的等腰三角形?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】美麗的甬江宛如一條玉帶穿城而過(guò),數(shù)學(xué)課外實(shí)踐活動(dòng)中,小林在甬江岸邊的A, B兩點(diǎn)處,利用測(cè)角儀分別對(duì)西岸的一觀景亭D進(jìn)行測(cè)量.如圖,測(cè)得∠DAC=45°,DBC=65°,若AB=114米,求觀景亭D到甬江岸邊AC的距離約為多少米?

(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

同步練習(xí)冊(cè)答案