精英家教網(wǎng)如圖,在正方形ABCD中,P是對角線BD上的一點,PE⊥BC,PF⊥CD,垂足分別為E、F,試判斷EF與AP的數(shù)量關(guān)系,并說明理由.
分析:由PE⊥BC,PF⊥CD,四邊形ABCD是正方形,可得四邊形PECF是矩形,根據(jù)矩形的性質(zhì),可得EF=PC,然后證得△PAD≌△PCD,即可得PA=PC,則可證得EF=AP.
解答:精英家教網(wǎng)解:法一:EF=AP.理由:
∵PE⊥BC,PF⊥CD,四邊形ABCD是正方形,
∴∠PEC=∠PFC=∠C=90°,
∴四邊形PECF是矩形,
連接PC,
∴PC=EF,
∵P是正方形ABCD對角線上一點,
∴AD=CD,∠PDA=∠PDC,
在△PAD和△PCD中,
AD=CD
∠PDA=∠PDC
PD=PD

∴△PAD≌△PCD(SAS),
∴PA=PC,精英家教網(wǎng)
∴EF=AP.

法二:延長FP交AB于點G,
則四邊形PEBG是正方形,
∴PE=PG,∠AGP=∠EPF=90°,
∵AG=AB-BG,PF=FG-PG,
∴AG=PF,
在△APG和△FEP中,
AG=FP
∠PGA=∠EPF
PG=PE
,
∴△PAG≌△EFP(SAS),
∴AP=EF.
點評:此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì)以及矩形的判定與性質(zhì).此題難度適中,解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案