【題目】如圖,在平面直角坐標(biāo)系中,AB∥OC,A(0,﹣4),B(a,b),C(c,0),并且a,c滿足c=+10.一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AB上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)在線段OC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)P,Q分別從點(diǎn)A,O同時(shí)出發(fā),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)Q隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)求B,C兩點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCB是平行四邊形?
(3)點(diǎn)D為線段OC的中點(diǎn),當(dāng)t為何值時(shí),△OPD是等腰三角形?直接寫(xiě)出t的所有值.
【答案】(1)B(13,﹣4),C(10,0);(2)當(dāng)t為3s時(shí),四邊形PQCB是平行四邊形;(3)當(dāng)t為s或1s或s時(shí),△OPD是等腰三角形
【解析】
(1)根據(jù)二次根式的性質(zhì)得出a,b的值進(jìn)而得出答案;
(2)由題意得:QP=2t,QO=t,PB=21﹣2t,QC=16﹣t,根據(jù)平行四邊形的判定可得21﹣2t=16﹣t,再解方程即可;
(3)當(dāng)OP=OD=5時(shí),當(dāng)DP=OD=5時(shí),當(dāng)DP=OP時(shí),根據(jù)等腰三角形的性質(zhì)和勾股定理即可得到結(jié)論.
(1)∵c=
∴,
解得a=13,
∴c=10,
∵AB∥OC,A(0,-4),
∴b=-4,
故B(13,-4),C(10,0);
(2)由題意得:AP=2t,QO=t,
則:PB=13-2t,QC=10-t,
∵當(dāng)PB=QC時(shí),四邊形PQCB是平行四邊形,
∴13-2t=10-t,
解得:t=3,
∴當(dāng)t為3s時(shí),四邊形PQCB是平行四邊形;
(3)∵點(diǎn)D為線段OC的中點(diǎn),
∴OD= OC=5,
當(dāng)OP=OD=5時(shí),△OPD是等腰三角形,
∵OA=4,
∴AP=3=2t,
∴t=,
當(dāng)DP=OD=5時(shí),△OPD是等腰三角形,
如圖,過(guò)P作PH⊥OD于H,
則PH=OA=4,AP=OH,
∵DH==3,
∴AP=OH=2=2t,
∴t=1,
當(dāng)DP=OP時(shí),△OPD是等腰三角形,
如圖,過(guò)P作PH⊥OD于H,
則OH=DH=,AP=OH==2t,
∴t=,
綜上所述,當(dāng)t為當(dāng)t為s或1s或 s時(shí),△OPD是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.已知某開(kāi)發(fā)區(qū)有一塊四邊形空地ABCD,現(xiàn)計(jì)劃在該空地上種植草皮,經(jīng)測(cè)量∠ADC=90°,AD=6m,CD=8m,BC=AB=13m,若每平方米草皮需200元,則在該空地上種植草皮共需多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,的位置如圖所示.
(1)畫(huà)出先向右平移3個(gè)單位,再向下平移6個(gè)單位后得到的,并寫(xiě)出,各頂點(diǎn)的坐標(biāo);
(2)畫(huà)出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到的,并寫(xiě)出,各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過(guò)點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在兩面墻之間有一個(gè)底端在A點(diǎn)的梯子,當(dāng)它靠在一側(cè)的墻上時(shí),梯子的頂端在B點(diǎn),當(dāng)它靠在另一側(cè)的墻上時(shí),梯子的頂端在D點(diǎn),已知∠BAC=60°,點(diǎn)B到地面的垂直距離BC=5米,DE=6米.
(1)求梯子的長(zhǎng)度;
(2)求兩面墻之間的距離CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)任意一個(gè)正整數(shù)m,如果m=k(k+1),其中k是正整數(shù),則稱m為“矩?cái)?shù)”,k 為m的最佳拆分點(diǎn).例如,56=7×(7+1),則56是一個(gè)“矩?cái)?shù)”,7為56的最佳拆分點(diǎn).
(1)求證:若“矩?cái)?shù)”m是3的倍數(shù),則m一定是6的倍數(shù);
(2)把“矩?cái)?shù)”p與“矩?cái)?shù)”q的差記為 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,則 D(20,6)=20﹣6=14.若“矩?cái)?shù)”p的最佳拆分點(diǎn)為t,“矩?cái)?shù)”q的最佳拆分點(diǎn)為s,當(dāng) D(p,q)=30時(shí),求 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商貿(mào)公司有、兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(立方米/件) | 質(zhì)量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號(hào),體積一共是20立方米,質(zhì)量一共是10.5噸,求、兩種型號(hào)商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車(chē)每輛額定載重3.5噸,容積為6立方米,其收費(fèi)方式有以下兩種:
①按車(chē)收費(fèi):每輛車(chē)運(yùn)輸貨物到目的地收費(fèi)600元;
②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.
現(xiàn)要將(1)中商品一次或分批運(yùn)輸?shù)侥康牡,如果兩種收費(fèi)方式可混合使用,商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式,使其所花運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)多位自然數(shù)的任意兩個(gè)相鄰數(shù)位上,右邊數(shù)位上的數(shù)總比左邊數(shù)位上的數(shù)大1,則我們稱這樣的自然數(shù)叫“美數(shù)”,例如:123,3456,67,…都是“美數(shù)”.
(1)若某個(gè)三位“美數(shù)”恰好等于其個(gè)位的76倍,這個(gè)“美數(shù)”為 .
(2)證明:任意一個(gè)四位“美數(shù)”減去任意一個(gè)兩位“美數(shù)”之差再減去1得到的結(jié)果定能被11整除;
(3)如果一個(gè)多位自然數(shù)的任意兩個(gè)相鄰數(shù)位上,左邊數(shù)位上的數(shù)總比右邊數(shù)位上的數(shù)大1,則我們稱這樣的自然數(shù)叫“妙數(shù)”,若任意一個(gè)十位為為整數(shù))的兩位“妙數(shù)”和任意一個(gè)個(gè)位為為整數(shù))的兩位“美數(shù)”之和為55,則稱兩位數(shù)為“美妙數(shù)”,并把這個(gè)“美妙數(shù)”記為,則求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的等邊三角形AOB的頂點(diǎn)O在坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)B在第一象限.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段BP的中點(diǎn)繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)C,點(diǎn)C隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接CP、CA.過(guò)點(diǎn)P作PD⊥OB于D點(diǎn)
(1)直接寫(xiě)出BD的長(zhǎng)并求出點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示)
(2)在點(diǎn)P從O向A運(yùn)動(dòng)的過(guò)程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請(qǐng)說(shuō)明理由;
(3)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)C運(yùn)動(dòng)路線的長(zhǎng)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com