如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。簟螦OB=120°,OA=4米,請(qǐng)求出石拱橋的高度.
分析:根據(jù)等腰三角形的三線合一和30°的直角三角形的性質(zhì)求得弦的弦心距,再進(jìn)一步求得其石拱橋的高度.
解答:解:過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,交弧于點(diǎn)C,
∵∠AOB=120°,OD⊥AB,
∴∠AOD=60°,
在Rt△AOD中,∠AOD=60°,
∴∠OAD=30°,
∴OD=2(米).
∴CD=OA-OD=2(米).
答:石拱橋的高度是2米.
點(diǎn)評(píng):此題考查了垂徑定理和等腰三角形的三線合一和30°所對(duì)的直角邊是斜邊的一半等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)如果已知石拱橋的橋拱的跨度(即弧所對(duì)的弦長(zhǎng))為24米,拱高(即弧的中點(diǎn)到弦的距離)為8米,求橋拱所在圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請(qǐng)你確定弧AB的中點(diǎn);(要求:用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法和證明)
(2)若∠AOB=120°,OA=4米,請(qǐng)求出石拱橋的高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案