【題目】如圖,數學趣聞:上世紀九十年代,國外有人傳說:“從月亮上看地球,長城是肉眼唯一看得見的建筑物.”設長城的厚度為,人的正常視力能看清的最小物體所形成的視角為,且已知月、地兩球之間的距離為,根據學過的數學知識,你認為這個傳說________.(請?zhí)?/span>“可能”或“不可能”,參考數據:)
【答案】不可能
【解析】
在直角三角形ODA中,AD=ODtan0.5′≈55.27m,即按照人的最小視角1′要想觀察到地球上的長城,那么長城的厚度至少應該是2OD=110.54m,遠遠大于10,即以上所述是不可能的.
設∠AOB為正常視力觀察長城所形成的夾角, 則AB=10m,∠AOB=1′,OD′⊥AB′.
在Rt△AOD中,tan∠AOD=,
∴OD=,
∵AD=AB=5,∠AOD=∠AOB=0.5′.
∴OD=≈≈34387.89(m)≈34.4(km).
這就是說,按照人的最小視角1′觀察地球上長城的厚度,最遠的距離只能是34.4km,而月球與地球之間的距離為380000km,這個數字很大,它相當于34.4km的11046倍,從這么遠看長城,根本無法看見.
科目:初中數學 來源: 題型:
【題目】某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據消費者需求,該網店決定用不超過8780元購進甲、乙兩種羽毛球共200筒,且甲種羽毛球的數量大于乙種羽毛球數量的,已知甲種羽毛球每筒的進價為50元,乙種羽毛球每筒的進價為40元.
①若設購進甲種羽毛球m筒,則該網店有哪幾種進貨方案?
②若所購進羽毛球均可全部售出,請求出網店所獲利潤W(元)與甲種羽毛球進貨量m(筒)之間的函數關系式,并說明當m為何值時所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,點A在反比例函數y=(x > 0)的圖象上,作AB⊥y軸于B點.
(1) △ABO的面積為 .
(2) 若點A的橫坐標為4,點P在x軸的正半軸.且△OAP是等腰三角形,求點P的坐標: .
(3)動點M從原點出發(fā),沿x軸的正方向運動,以MA為直角邊,在MA的右側作等腰Rt△MAN=90°,若在點M運動過程中,斜邊MN始終在x軸上,求ON-OM的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=6, ∠BAC=30, ∠BAC的平分線交BC于點D,E,F分別是線段AD和AB上的動點,則BE+EF的最小值是___
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y=kx(k≠0)經過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:一個正比例函數圖象y=2x和一個一次函數y=kx+b的圖象交于點P(﹣2,a)且一次函數的圖象與y軸的交點Q的縱坐標為4.
(1)求這兩個函數的解析式;
(2)在同一坐標系中,分別畫出這兩個函數的圖象;
(3)求△PQO的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線L:y=﹣x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點N(0,4),動點M從A點以每秒1個單位的速度勻速沿x軸向左移動.
(1)點A的坐標:_____;點B的坐標:_____;
(2)求△NOM的面積S與M的移動時間t之間的函數關系式;
(3)在y軸右邊,當t為何值時,△NOM≌△AOB,求出此時點M的坐標;
(4)在(3)的條件下,若點G是線段ON上一點,連結MG,△MGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按要求作圖:已知A(﹣2,1),B(﹣1,2),C(﹣3,4).
(1)畫出與三角形ABC關于y軸對稱的三角形A1B1C1;
(2)將三角形A1B1C1先向右平移2個單位,再向下平移1個單位,得到三角形A2B2C2,則三角形A2B2C2頂點坐標分別為:A2 B2 C2 ;
(3)若點P(a-1,b+2)與點A關于x軸對稱,則a= ,b= .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com