【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( )
A. B. C.3 D.4
【答案】A
【解析】
試題分析:此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應(yīng)用,題目比較好,但是有一定的難度,屬于綜合性試題.
過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個(gè)二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設(shè)P(2x,0),根據(jù)二次函數(shù)的對(duì)稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,=,代入求出BF和CM,相加即可求出答案.
過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,
∵BF⊥OA,DE⊥OA,CM⊥OA,
∴BF∥DE∥CM.
∵OD=AD=3,DE⊥OA,
∴OE=EA=OA=2,
由勾股定理得:DE==5,設(shè)P(2x,0),根據(jù)二次函數(shù)的對(duì)稱性得出OF=PF=x,
∵BF∥DE∥CM,
∴△OBF∽△ODE,△ACM∽△ADE,
∴=,=,
∵AM=PM=(OA-OP)=(4-2x)=2-x,
即=,=,
解得:BF=x,CM=-x,
∴BF+CM=.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 軸于點(diǎn) ,點(diǎn)是直線 上的動(dòng)點(diǎn).直線 交 于點(diǎn) ,過點(diǎn) 作直線 垂直于 ,垂足為 ,過點(diǎn) , 的直線 交 于點(diǎn) E,當(dāng)直線 ,,能圍成三角形時(shí),設(shè)該三角形面積為 ,當(dāng)直線 ,,能圍成三角形時(shí),設(shè)該三角形面積為 .
(1)若點(diǎn) 在線段 上,且 ,則 點(diǎn)坐標(biāo)為_________;
(2)若點(diǎn) 在直線上,且,則的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線的圖象經(jīng)過點(diǎn)、,設(shè)它與軸的另一個(gè)交點(diǎn)為(點(diǎn)在點(diǎn)的左側(cè)),且的面積是3.
(1)求該拋物線的表達(dá)式;
(2)求的正切值;
(3)若拋物線與軸交于點(diǎn),直線交軸于點(diǎn),點(diǎn)在射線上,當(dāng)與相似時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線y=x與反比例函數(shù)y=(k≠0,x>0)的圖象交于點(diǎn)Q(4,a),點(diǎn)P(m,n)是反比例函數(shù)圖象上一點(diǎn),且n=2m.
(1)求點(diǎn) P坐標(biāo);
(2)若點(diǎn)M在x軸上,使得△PMQ的面積為3,求M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,△ABC的頂點(diǎn)A,B,C均在格點(diǎn)上.
(1)∠ACB的大小為 (度)
(2)在如圖所示的網(wǎng)格中,以A為中心,取旋轉(zhuǎn)角等于∠BAC,把△ABC逆時(shí)針旋轉(zhuǎn),請(qǐng)用無刻度的直尺,畫出旋轉(zhuǎn)后的△ABC,并簡(jiǎn)要說明旋轉(zhuǎn)后點(diǎn)C和點(diǎn)B的對(duì)應(yīng)點(diǎn)點(diǎn)C′和點(diǎn)B′的位置是如何而找到的(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、b、c為常數(shù),的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.
已知拋物線與其“夢(mèng)想直線”交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與x軸負(fù)半軸交于點(diǎn)C.
填空:該拋物線的“夢(mèng)想直線”的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______;
如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若為該拋物線的“夢(mèng)想三角形”,求點(diǎn)N的坐標(biāo);
當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“夢(mèng)想直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生的安全意識(shí),我市某中學(xué)組織初三年級(jí)1000名學(xué)生參加了“校園安全知識(shí)競(jìng)賽”,隨機(jī)抽取了一個(gè)班學(xué)生的成績(jī)進(jìn)行整理,分為,,,四個(gè)等級(jí),并把結(jié)果整理繪制成條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖(部分),請(qǐng)依據(jù)如圖提供的信息,完成下列問題:
(1)請(qǐng)估計(jì)本校初三年級(jí)等級(jí)為的學(xué)生人數(shù);
(2)學(xué)校決定從得滿分的3名女生和2名男生中隨機(jī)抽取3人參加市級(jí)比賽,請(qǐng)求出恰好抽到2名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年1月19日,中歐(廈門-西安-布達(dá)佩斯)班列駛出廈門自貿(mào)區(qū)海滄火車站,經(jīng)西安直達(dá)匈牙利首都布達(dá)佩斯 ,我市與歐洲各國(guó)經(jīng)貿(mào)往來日益頻繁,某歐洲客商準(zhǔn)備在廈門采購(gòu)一批特色商品,經(jīng)調(diào)查,用元采購(gòu)型商品的件數(shù)是用元采購(gòu)型商品件數(shù)的倍,一件型商品的進(jìn)價(jià)比一件型商品的進(jìn)價(jià)多元.
(1)求一件型商品的進(jìn)價(jià)分別為多少元?
(2)若該歐洲客商購(gòu)進(jìn)型商品共件進(jìn)行試銷,其中型商品的件數(shù)不大于型商品的件數(shù),且不小于件,已知型商品的售價(jià)為元/件,型商品的售價(jià)為元/件,且全部售出,設(shè)購(gòu)進(jìn)型商品件.
①求該客商銷售這批商品的利潤(rùn)與之間的函數(shù)解析式;
②若歐洲商決定在試銷活動(dòng)中每售出一件型商品,就從一件型商品的利潤(rùn)中捐獻(xiàn)慈善資金元,求該客商售完所有商品并捐獻(xiàn)資金后獲得的最大收益.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,熱氣球的探測(cè)器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com