【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 .
【答案】P(3,4)或(2,4)或(8,4)
【解析】
試題解析:由題意,當(dāng)△ODP是腰長為5的等腰三角形時(shí),有三種情況:
(1)如圖所示,PD=OD=5,點(diǎn)P在點(diǎn)D的左側(cè).
過點(diǎn)P作PE⊥x軸于點(diǎn)E,則PE=4.
在Rt△PDE中,由勾股定理得:DE=,
∴OE=OD-DE=5-3=2,
∴此時(shí)點(diǎn)P坐標(biāo)為(2,4);
(2)如圖所示,OP=OD=5.
過點(diǎn)P作PE⊥x軸于點(diǎn)E,則PE=4.
在Rt△POE中,由勾股定理得: OE=,
∴此時(shí)點(diǎn)P坐標(biāo)為(3,4);
(3)如圖所示,PD=OD=5,點(diǎn)P在點(diǎn)D的右側(cè).
過點(diǎn)P作PE⊥x軸于點(diǎn)E,則PE=4.
在Rt△PDE中,由勾股定理得: DE=,
∴OE=OD+DE=5+3=8,
∴此時(shí)點(diǎn)P坐標(biāo)為(8,4).
綜上所述,點(diǎn)P的坐標(biāo)為:(2,4)或(3,4)或(8,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)是上一點(diǎn),且,連接并延長交于點(diǎn),過點(diǎn)作的垂線,垂足為,交于點(diǎn).
(1)求證:;
(2)若,解答下列問題:
①求證:;
②當(dāng)時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱的高是,當(dāng)圓柱的底面半徑由小到大變化時(shí),圓柱的體積也隨之發(fā)生了變化.
(1)在這個(gè)變化中,自變量是______,因變量是______;
(2)寫出體積與半徑的關(guān)系式;
(3)當(dāng)?shù)酌姘霃接?/span>變化到時(shí),通過計(jì)算說明圓柱的體積增加了多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x與反比例函數(shù)y=在第一象限內(nèi)的圖像交于點(diǎn)A(m,2),將直線y=2x向下平移后與反比例函數(shù)y=在第一象限內(nèi)的圖像交于點(diǎn)P,且△POA的面積為2.
(1)求k的值;
(2)求平移后的直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖
(1)如圖1,學(xué)校A,B在道路MN的異側(cè).在MN上建公交站P,使得P到A,B的距離相等。利用尺規(guī)作圖確定P的位置.
(2)如圖2,學(xué)校C,D在道路MN的同側(cè),在MN上建公交站Q,使得Q到C,D的距離的和最短.利用網(wǎng)格確定Q的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)動(dòng)點(diǎn)N(-2,n),求使MN+BN的值最小時(shí)n的值;
(3)P是拋物線上位于x軸上方的一點(diǎn),請(qǐng)?zhí)骄浚菏欠翊嬖邳c(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,線段BC∥x軸、線段AB∥y軸,點(diǎn)B坐標(biāo)為(4,3),反比例函數(shù)y=(x>0)的圖像與線段AB交于點(diǎn)D,與線段BC交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,則點(diǎn)B'的縱坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com