【題目】如圖,中,,若點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿折線(xiàn)運(yùn)動(dòng)(回到點(diǎn)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為秒.

1)當(dāng)點(diǎn)上時(shí),且滿(mǎn)足時(shí),求出此時(shí)的值;

2)當(dāng)點(diǎn)上時(shí),求出為何值時(shí),為以為腰的等腰三角形.

【答案】1;(2秒或

【解析】

1)根據(jù)勾股定理可得,AC3,根據(jù)題意可知,PAPBACCBt7t,PCt3,根據(jù)勾股定理列關(guān)于t的方程,解方程即可得到t的值;

2)若點(diǎn)PAB上,根據(jù)運(yùn)動(dòng)的路程易得t的值,當(dāng)APAC3時(shí),△ACP為等腰三角形,根據(jù)等量關(guān)系列出關(guān)于t的方程即可求出t的值;當(dāng)CPAC時(shí),過(guò)點(diǎn)于點(diǎn)根據(jù)直角三角形面積公式可得CD的長(zhǎng),由勾股定理可得AD的長(zhǎng),根據(jù)等腰三角形的性質(zhì)可得AP的長(zhǎng),根據(jù)等量關(guān)系列出關(guān)于t的方程即可求出t的值.

解:中,

由勾股定理,得

如圖1,連接

當(dāng)時(shí),

中,

解得

①如圖2,當(dāng)時(shí),為等腰三角形,

②如圖3,當(dāng)點(diǎn)上,時(shí),

過(guò)點(diǎn)于點(diǎn)

由勾股定理,得

綜上所述,當(dāng)點(diǎn)上,秒或秒時(shí),為以為腰的等腰三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A、B,C三點(diǎn)的坐標(biāo)分別為(0,1)、(3,3)、(4,0).

ISAOC   

2)若點(diǎn)Pm1,1)是第二象限內(nèi)一點(diǎn),且△AOP的面積不大于△ABC的面積,求m的取值范圍;

3)若將線(xiàn)段AB向左平移1個(gè)單位長(zhǎng)度,點(diǎn)Dx軸上一點(diǎn),點(diǎn)E4,n)為第一象限內(nèi)一動(dòng)點(diǎn),連BE、CEAC,若△ABD的面積等于由AB、BE、CE、AC四條線(xiàn)段圍成圖形的面積,則點(diǎn)D的坐標(biāo)為   .(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADBCFCCD,∠1=∠2,∠B60°.

1)求∠BCF的度數(shù);(2)如果DE是∠ADC的平分線(xiàn),那么DEAB平行嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+2x+b(a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BEAC與點(diǎn)E,MNAC于點(diǎn)N,∠1=∠2,∠3=∠C,若∠AFE80°,求∠DAF的度數(shù).請(qǐng)根據(jù)解題過(guò)程“填空”或“說(shuō)明理由”.

解:∵BEACMNAC

BEMN

∴∠1      

又∵∠1=∠2

∴∠2      

EFBC   

∵∠3=∠C

ADBC

ADEF

∴∠DAF+AFE180°(   

∴∠DAF180°﹣∠AFE180°﹣80°=100°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)到△AB1C1的位置,使得點(diǎn)C,A,B1在同一條直線(xiàn)上,那么旋轉(zhuǎn)角等于(
A.55°
B.70°
C.125°
D.145°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如:3+2=(1+2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請(qǐng)我仿照小明的方法探索并解決下列問(wèn)題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,上一點(diǎn),且,過(guò)上一點(diǎn),作,,已知:,,則的長(zhǎng)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】山西省平遙縣政府為進(jìn)一步挖掘雙林寺、老醯水鎮(zhèn)、平遙古城的旅游 價(jià)值,計(jì)劃在2019年開(kāi)工建設(shè)一條途經(jīng)平遙高鐵站、雙林寺、老醯(讀,醋的意思) 水鎮(zhèn)、平遙古城的旅游+交通融合軌道觀(guān)光線(xiàn).甲、乙兩個(gè)工程隊(duì)計(jì)劃參與工程建設(shè),若讓甲隊(duì)單獨(dú)施工天完成該項(xiàng)工程的,然后乙隊(duì)加入,兩隊(duì)還需共同施工天,才能完成該項(xiàng)工程.

1)若乙隊(duì)單獨(dú)施工,需要多少天才能完成該項(xiàng)工程?

2)若先讓甲隊(duì)施工且甲隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過(guò)天,則乙隊(duì)加入后至 少要施工多少天才能完成該項(xiàng)工程?

查看答案和解析>>

同步練習(xí)冊(cè)答案