【題目】溫州市在今年三月份啟動實施明眸皓齒工程.根據(jù)安排,某校對于學(xué)生使用電子產(chǎn)品的一周用時情況進(jìn)行抽樣調(diào)查,繪制成以下頻數(shù)分布直方圖.請根據(jù)圖中提供的信息,解答下列問題.

(1)這次共抽取了 名學(xué)生進(jìn)行調(diào)查.

(2)用時在2.45~3.45小時這組的頻數(shù)是_ 頻率是_ .

(3)如果該校有1000名學(xué)生,請估計一周電子產(chǎn)品用時在0.45~3.45小時的學(xué)生人數(shù).

【答案】(1)400. (2)104; 0.26.(3)540

【解析】

1)根據(jù)頻數(shù)分布直方圖得到各個時間段的頻數(shù),計算即可;

2)從頻數(shù)分布直方圖找出用時在2.453.45小時的頻數(shù),求出頻率;

3)利用樣本估計總體即可.

解:(1)這次共抽取的學(xué)生數(shù)為:4072104925240400(人),

故答案為:400;

2)用時在2.453.45小時這組的頻數(shù)為104,

頻率為:

故答案為:104;0.26

21000×(人).

答:估計1000名學(xué)生一周電子產(chǎn)品用時在0.45~3.45小時的學(xué)生人數(shù)為540.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方塊搭成的幾何體.從正面看和從上面看的形狀如圖所示,問組成這樣的幾何體最多需要多少個立方塊,最少需要多少個立方塊?請畫出最少和最多時從左面看到的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,△ABC△ADE均為等邊三角形,點D在邊BC上,連接CE.請?zhí)羁眨?/span>

①∠ACE的度數(shù)為   ;

線段AC、CD、CE之間的數(shù)量關(guān)系為   

(2)拓展探究

如圖2,△ABC△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點D在邊BC上,連接CE.請判斷∠ACE的度數(shù)及線段AC、CD、CE之間的數(shù)量關(guān)系,并說明理由.

(3)解決問題

如圖3,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,ACBD交于點E,請直接寫出線段AC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰△ABC中,ADBC交直線BC于點D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是△ABC的邊BC上一點,AB4,AD2,DACB,如果△ABD的面積為15,那么△ACD的面積為(  )

A. 15 B. 10 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在校運會之前想了解九年級女生一分鐘仰臥起坐得分情況(滿分為7分),在九年級500名女生中隨機(jī)抽出60名女生進(jìn)行一次抽樣摸底測試所得數(shù)據(jù)如下表:

1)從表中看出所抽的學(xué)生所得的分?jǐn)?shù)數(shù)據(jù)的眾數(shù)是______

A.40% B.7 C.6.5 D.5%

2)請將下面統(tǒng)計圖補(bǔ)充完整.

3)根據(jù)上述抽查,請估計該?荚嚪?jǐn)?shù)不低于6分的人數(shù)會有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ADBC于點D,BE平分ABC,若ABC=64°AEB=70°

(1)求CAD的度數(shù);

(2)若點F為線段BC上的任意一點,當(dāng)EFC為直角三角形時,求BEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的表達(dá)式為:y=-3x+3,且直線l1x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2交于點C

1)求點D的坐標(biāo);

2)求直線l2的解析表達(dá)式;

3)求ADC的面積;

4)在直線l2上存在異于點C的另一點P,使得ADPADC的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,馬戲團(tuán)讓獅子和公雞表演蹺蹺板節(jié)目.蹺蹺板支柱 AB的高度為12米.

1)若吊環(huán)高度為2米,支點 A為蹺蹺板 PQ的中點,獅子能否將公雞送到吊環(huán)上?為什么?

2)若吊環(huán)高度為36米,在不改變其他條件的前提下移動支柱,當(dāng)支點 A移到蹺蹺板 PQ的什么位置時,獅子剛好能將公雞送到吊環(huán)上?

查看答案和解析>>

同步練習(xí)冊答案