【題目】如圖,AB是半圓的直徑,點(diǎn)O是圓心,點(diǎn)C是OA的中點(diǎn),CD⊥OA交半圓于點(diǎn)D,點(diǎn)E是的中點(diǎn),連接AE、OD,過點(diǎn)D作DP∥AE交BA的延長線于點(diǎn)P.
(1)求∠AOD的度數(shù);
(2)求證:PD是半圓O的切線.
【答案】(1) 60°;(2)證明見解析.
【解析】試題分析:(1)根據(jù)CO與DO的數(shù)量關(guān)系,即可得出∠CDO的度數(shù),進(jìn)而求出∠AOD的度數(shù);
(2)利用點(diǎn)E是的中點(diǎn),進(jìn)而求出∠EAB=30°,即可得出∠AFO=90°,即可得出答案.
試題解析:(1)∵AB是半圓的直徑,點(diǎn)O是圓心,點(diǎn)C是OA的中點(diǎn),
∴2CO=DO,∠DCO=90°,
∴∠CDO=30°,
∴∠AOD=60°;
(2)如圖,連接OE,
∵點(diǎn)E是的中點(diǎn),
∴,
∵由(1)得∠AOD=60°,
∴∠DOB=120°,
∴∠BOE=60°,
∴∠EAB=30°,
∴∠AFO=90°,
∵DP∥AE,
∴PD⊥OD,
∴直線PD為⊙O的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“互聯(lián)網(wǎng)”已全面進(jìn)入人們的日常生活,據(jù)有關(guān)部門統(tǒng)計,目前全國4G用戶數(shù)達(dá)到4.62億,其中4.62億用科學(xué)記數(shù)法表示為( )
A.4.62×104
B.4.62×106
C.4.62×108
D.0.462×108
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上的點(diǎn)A、O、B、C、D分別表示﹣3、0、2.5、5、﹣6,回答下列問題.
(1)O、B兩點(diǎn)間的距離是 .
(2)A、D兩點(diǎn)間的距離是 .
(3)C、B兩點(diǎn)間的距離是 .
(4)請觀察思考,若點(diǎn)A表示數(shù)m,且m<0,點(diǎn)B表示數(shù)n,且n>0,那么用含m,n的代數(shù)式表示A、B兩點(diǎn)間的距離是 .
(5)根據(jù)(1)—(4)中點(diǎn)表示的數(shù)與兩點(diǎn)間的距離之間的關(guān)系,歸納:若點(diǎn)A表示數(shù)a,點(diǎn)B表示數(shù)b,那么A、B兩點(diǎn)間的距離是 (用含a、b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為⊙O的直徑,點(diǎn)A是弧BC的中點(diǎn),AD交BC于E點(diǎn),AE=2,ED=4.
(1)求證: ~△ADB;
(2) 求的值;
(3)延長BC至F,連接FD,使的面積等于,求證:DF與⊙O相切。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為反比例函數(shù)y= 的圖像上一點(diǎn),PA⊥x軸于點(diǎn)A,△PAO的面積為6,則下列各點(diǎn)中也在這個反比例函數(shù)圖像上的是( )
A.(2,3)
B.(﹣2,6)
C.( 2,6 )
D.(﹣2,3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com