【題目】用尺規(guī)在一個(gè)平行四邊形內(nèi)作菱形ABCD,下列作法中錯(cuò)誤的是( )
A. B. C. D.
【答案】C
【解析】
首先要理解每個(gè)圖的作法,作的輔助線所具有的性質(zhì),再根據(jù)平行四邊形的性質(zhì)和菱形的判定定理判定.
A、作的輔助線AC是BD的垂直平分線,由平行四邊形中心對(duì)稱圖形的性質(zhì)可得AC與BD互相平分且垂直,則四邊形ABCD是菱形,故A不符合題意;
B、由輔助線可得AD=AB=BC,由平行四邊形的性質(zhì)可得AD//BC,則四邊形ABCD是菱形,故B不符合題意;
C、輔助線AB、CD分別是原平行四邊形一組對(duì)角的角平分線,只能說明四邊形ABCD是平行四邊形,故C符合題意;
D、此題的作法是:連接AC,分別作兩個(gè)角與已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,
由AD//BC,得∠BAD+∠ABC=180°,
∠BAC=∠DAC=∠ACB=∠ACD,
則AB=BC,AD =CD,∠BAD=∠BCD,
則∠BCD+∠ABC=180°,
則AB//CD,
則四邊形ABCD是菱形,
故D不符合題意.
故答案為C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ECD都是等邊三角形
(1)如圖1,若B、C、D三點(diǎn)在一條直線上,求證:BE=AD;
(2)保持△ABC不動(dòng),將△ECD繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使∠ACE=90°(如圖2),BC與DE有怎樣的位置關(guān)系?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,∠ACB=90°,AC=6cm,BC =8cm.點(diǎn)P從A點(diǎn)出發(fā),沿路徑向終點(diǎn)B運(yùn)動(dòng),點(diǎn)Q從B點(diǎn)出發(fā),沿路徑向終點(diǎn)A運(yùn)動(dòng).點(diǎn)P 和Q分別和的運(yùn)動(dòng)速度同時(shí)開始運(yùn)動(dòng),兩點(diǎn)都要到相應(yīng)的終點(diǎn)時(shí)才能停止運(yùn)動(dòng),在某時(shí)刻,分別過點(diǎn)P和Q作PE⊥l于E,QF⊥l于F.則點(diǎn)P運(yùn)動(dòng)多少秒時(shí),△PEC和△CFQ全等?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“今天你光盤了嗎?”這是國(guó)家倡導(dǎo)“厲行節(jié)約,反對(duì)浪費(fèi)”以來的時(shí)尚流行語(yǔ).某校團(tuán)委隨機(jī)抽取了部分學(xué)生,對(duì)他們進(jìn)行了關(guān)于“光盤行動(dòng)”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)上述信息,解答下列問題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校1200名學(xué)生中對(duì)“光盤行動(dòng)”持贊成態(tài)度的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點(diǎn)D作△BCD的BC邊上的高DE,
易證△ABC≌△BDE,從而得到△BCD的面積為 .
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡(jiǎn)單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,對(duì)稱軸是x=1,有以下四個(gè)結(jié)論:
①abc>0;②b2﹣4ac>0;③b=﹣2a;④a+b+c>2,
其中正確的是(填寫序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題與探索
問題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對(duì)角線AC剪開,得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長(zhǎng)BC和DC′交于點(diǎn)E,則四邊形ACEC′的形狀是 .
(2)創(chuàng)新小組將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請(qǐng)證明這個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. BF與CE相交于點(diǎn)M
(1)求證:①△ACE≌△AFB;②EC⊥BF.
(2)如圖乙連接EF,畫出△ABC邊BC上的高線AD,延長(zhǎng)DA交EF于點(diǎn)N,其他條件不變,下列四個(gè)結(jié)論:①∠EAN=∠ABC;
②△AEN≌△BAD;③;④EN=FN。
正確的結(jié)論是____________(把正確結(jié)論的序號(hào)全部填上)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com