【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點(diǎn)測(cè)得D點(diǎn)的仰角∠EAD為45°,在B點(diǎn)測(cè)得D點(diǎn)的仰角∠CBD為60°,則乙建筑物的高度為( )米.
A. 30 B. 30﹣30 C. 30 D. 30
【答案】B
【解析】
在Rt△BCD中,解直角三角形,可求得CD的長(zhǎng),即求得甲的高度,過(guò)A作AF⊥CD于點(diǎn)F,在Rt△ADF中解直角三角形可求得DF,則可求得CF的長(zhǎng),即可求得乙的高度.
解:如圖,過(guò)A作AF⊥CD于點(diǎn)F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵tan∠DBC=,
∴CD=BCtan60°=30m,
∴甲建筑物的高度為30m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD-DF=(30-30)m,
∴乙建筑物的高度為(30-30)m.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口在觀測(cè)站的正東方向,=4km,某船從港口出發(fā),沿北偏東方向航行一段距離后到達(dá)處,此時(shí)從觀測(cè)站處側(cè)得該船位于北偏東的方向,則該船與觀測(cè)站之間的距離(即的長(zhǎng))為( )
A. km B. km C. km D. km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示為一上面無(wú)蓋的正方體紙盒,現(xiàn)將其剪開(kāi)展成平面圖,如圖2所示,已知展開(kāi)圖中每個(gè)正方形的邊長(zhǎng)為1,
(1)求線(xiàn)段A′C′的長(zhǎng)度;
(2)試比較立體圖中∠BAC與展開(kāi)圖中∠B′A′C′的大小關(guān)系?并寫(xiě)出過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,現(xiàn)將Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到△AB′C′,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓O中,弦AB=8,點(diǎn)C在圓O上(C與A,B不重合),連接CA、CB,過(guò)點(diǎn)O分別作OD⊥AC,OE⊥BC,垂足分別是點(diǎn)D、E.
(1)求線(xiàn)段DE的長(zhǎng);
(2)點(diǎn)O到AB的距離為3,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知∠A是銳角,求證:sin2A+cos2A=1.
(2)已知∠A為銳角,且sinAcosA=,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明想測(cè)量學(xué)校教學(xué)樓的高度,教學(xué)樓AB的后面有一建筑物CD,他測(cè)得當(dāng)光線(xiàn)與地面成22°的夾角時(shí),教學(xué)樓在建筑物的墻上留下高2米高的影子CE;而當(dāng)光線(xiàn)與地面成45°的夾角時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有13米的距離(點(diǎn)B,F(xiàn),C在同一條直線(xiàn)上),則AE之間的長(zhǎng)為_____米.(結(jié)果精確到lm,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如示意圖,小華家(點(diǎn)A處)和公路(l)之間豎立著一塊35m長(zhǎng)且平行于公路的巨型廣告牌(DE).廣告牌擋住了小華的視線(xiàn),請(qǐng)?jiān)趫D中畫(huà)出視點(diǎn)A的盲區(qū),并將盲區(qū)內(nèi)的那段公路計(jì)為BC.一輛以60km/h勻速行駛的汽車(chē)經(jīng)過(guò)公路段的時(shí)間是3s,已知廣告牌和公路的距離是40m,求小華家到公路的距離.(精確到1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=的圖象過(guò)點(diǎn)A(6,1).
(1)求反比例函數(shù)的表達(dá)式;
(2)過(guò)點(diǎn)A的直線(xiàn)與反比例函數(shù)y=圖象的另一個(gè)交點(diǎn)為B,與y軸交于點(diǎn)P,若AP=3PB,求點(diǎn)B的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com