【題目】移動公司為了方便學(xué)生上網(wǎng)查資料,提供了兩種上網(wǎng)優(yōu)惠方法:

A.計(jì)時(shí)制:0.08/分鐘;B.包月制:40/月(只限一臺電腦上網(wǎng)).

另外,不管哪種收費(fèi)方式,上網(wǎng)時(shí)都得加收通訊費(fèi)0.03/分鐘.

1)設(shè)小明某月上網(wǎng)時(shí)間為x分鐘,請分別用含x的式子表示出兩種付費(fèi)方式下小明應(yīng)支付的費(fèi)用;

2)一個(gè)月上網(wǎng)時(shí)間為多少分鐘時(shí),兩種方式付費(fèi)一樣多?

3)如果一個(gè)月上網(wǎng)10小時(shí),選擇哪種方式更優(yōu)惠?

【答案】(1)0.11x,0.03x+40(2)500(3)B

【解析】

(1)根據(jù)兩種付費(fèi)方式,用x表示出即可;

(2)根據(jù)兩種付費(fèi)方式,得出等式方程求出即可;
(3)根據(jù)一個(gè)月只上網(wǎng)10小時(shí),分別求出兩種方式付費(fèi)錢數(shù),即可得出答案.

(1)

(2)由題意,得

,得

一個(gè)月上網(wǎng)時(shí)間為500分鐘時(shí)兩種方式付費(fèi)一樣多.

(3)

,

因?yàn)?/span>,選擇B包月制更優(yōu)惠.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)、如圖(1),ABCD,點(diǎn)P在AB、CD外部,若B=40°,D=15°,則BPD °

(2)、如圖(2),ABCD,點(diǎn)P在AB、CD內(nèi)部,則B,BPD,D之間有何數(shù)量關(guān)系?證明你的結(jié)論;

(3)、在圖(2)中,將直線AB繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)一定角度交直線CD于點(diǎn)M,如圖(3),若BPD=90°BMD=40°,求B+D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖所示是每一個(gè)小方格都是邊長為1的正方形網(wǎng)格,

(1)利用網(wǎng)格線作圖:

①在上找一點(diǎn)P,使點(diǎn)P的距離相等;

②在射線上找一點(diǎn)Q,使.

(2)(1)中連接,試說明是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CA⊥AB,垂足為點(diǎn)A,AB=8,AC=4,射線BM⊥AB,垂足為點(diǎn)B,一動點(diǎn)EA點(diǎn)出發(fā)以2厘米/秒的速度沿射線AN運(yùn)動,點(diǎn)D為射線BM上一動點(diǎn),隨著E點(diǎn)運(yùn)動而運(yùn)動,且始終保持ED=CB,當(dāng)點(diǎn)E離開點(diǎn)A后,運(yùn)動______ 秒時(shí),△DEB△BCA全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣陽光體育“大課間”活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動項(xiàng)目.為了了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),∠EAF=45°,△ECF的周長為4,則正方形ABCD的邊長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y= (k>0)的圖象經(jīng)過點(diǎn)A(1,m),過點(diǎn)A作AB⊥y軸于點(diǎn)B,且△AOB的面積為1.
(1)求m,k的值;
(2)若一次函數(shù)y=nx+2(n≠0)的圖象與反比例函數(shù)y= 的圖象有兩個(gè)不同的公共點(diǎn),求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC+ECB=180°,∠P=Q

1ABED平行嗎?為什么?

2PBCD平行嗎?為什么?

3)∠1與∠2是否相等?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)將ABD平移,使D沿BD延長線移至C得到A′B′D′,A′B′交AC于E,AD平分BAC.

(1)猜想B′EC與A′之間的關(guān)系,并寫出理由.

(2)如圖將ABD平移至如圖(2)所示,得到A′B′D′,請問:A′D平分B′A′C嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案