如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點O.下列結(jié)論:①∠DOC=90° ,   ②OC=OE,   ③tan∠OCD =   ,④  中,正確的有【    】

A.1個         B.2個       C.3個         D.4個

 

【答案】

C。

【解析】∵正方形ABCD的邊長為4,∴BC=CD=4,∠B=∠DCF=90°。

∵AE=BF=1,∴BE=CF=4-1=3。

在△EBC和△FCD中,∵BC=CD,∠B=∠DCF,BE=CF,∴△EBC≌△FCD(SAS)。

∴∠CFD=∠BEC。∴∠BCE+∠BEC=∠BCE+∠CFD=90°。

∴∠DOC=90°。故①正確。

如圖,

若OC=OE,∵DF⊥EC,∴CD=DE。

∵CD=AD<DE(矛盾),故②錯誤。

∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC。

∴tan∠OCD=tan∠DFC=。故③正確。

∵△EBC≌△FCD,∴SEBC=SFCD。

∴SEBC-SFOC=SFCD-S-,即SODC=S四邊形BEOF。故④正確。故選C。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉(zhuǎn)得到△CBF,點F恰好在AB邊上.
(1)請畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當(dāng)CE=
a
a
時,S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
(1)試說明OE=OF;
(2)當(dāng)AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習(xí)冊答案