【題目】如圖,△ABC和△DEF都是直角三角形,∠ACB=∠DFE=90°,AB=DE,頂點(diǎn)F在BC上,邊DF經(jīng)過點(diǎn)C,點(diǎn)A,E在BC同側(cè),DE⊥AB.
(1)求證:△ABC≌△DEF;
(2)若AC=11,EF=6,CF=4,求BD的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+2mx+(m2﹣1)(m是常數(shù)).
(1)若它的圖象與x軸交于兩點(diǎn)A,B,求線段AB的長;
(2)若它的圖象的頂點(diǎn)在直線y=x+3上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,和均為等腰三角形,且,連接,,兩條線段所在的直線交于點(diǎn).
(1)線段與有何數(shù)量關(guān)系和位置關(guān)系,請說明理由.
(2)若已知,,繞點(diǎn)順時針旋轉(zhuǎn),
①如圖2,當(dāng)點(diǎn)恰好落在的延長線上時,求的長;
②在旋轉(zhuǎn)一周的過程中,設(shè)的面積為,求的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,以AC為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為弧AD的中點(diǎn),連接CE交AB于點(diǎn)F,且BF=BC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為2,=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是( 。
A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某導(dǎo)彈發(fā)射車在山頂A處進(jìn)行射擊訓(xùn)練的示意圖,點(diǎn)A在y軸上,與原點(diǎn)O的距離是8百米(為了計算方便,我們把本題中的距離用百米作單位).此導(dǎo)彈發(fā)射車在A處進(jìn)行某個角度的射擊訓(xùn)練,點(diǎn)M是導(dǎo)彈向右上射出后某時刻的位置.忽略空氣阻力,實(shí)驗(yàn)表明:導(dǎo)彈射出t秒時,點(diǎn)M,A的水平距離是vt百米,點(diǎn)M與x軸(水平)的豎直距離是(8+vt﹣5t2)百米(v的值由發(fā)射者設(shè)定).在點(diǎn)A和x軸上的點(diǎn)B處觀測射擊目標(biāo)P的仰角分別是a和β,OB=3百米,tanα=.tanβ=.
(1)若v=7,完成下列問題:
①當(dāng)點(diǎn)M,A的水平距離是7百米時,點(diǎn)M到x軸的距離是 百米;
②設(shè)點(diǎn)M坐標(biāo)為(x,y),求y與x的關(guān)系式(不必寫x的取值范圍).
(2)按(1)的射擊方式,能否命中目標(biāo)P?請說明理由.
(3)目標(biāo)以m百米/秒的速度從點(diǎn)P向右移動,當(dāng)v時,若能使目標(biāo)被擊中,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c的頂點(diǎn)(0,5),且過點(diǎn)(﹣3,),先求拋物線的解析式,再解決下列問題:
(應(yīng)用)問題1,如圖2,線段AB=d(定值),將其彎折成互相垂直的兩段AC、CB后,設(shè)A、B兩點(diǎn)的距離為x,由A、B、C三點(diǎn)組成圖形面積為S,且S與x的函數(shù)關(guān)系如圖所示(拋物線y=ax2+bx+c上MN之間的部分,M在x軸上):
(1)填空:線段AB的長度d= ;彎折后A、B兩點(diǎn)的距離x的取值范圍是 ;若S=3,則是否存在點(diǎn)C,將AB分成兩段(填“能”或“不能”) ;若面積S=1.5時,點(diǎn)C將線段AB分成兩段的長分別是 ;
(2)填空:在如圖1中,以原點(diǎn)O為圓心,A、B兩點(diǎn)的距離x為半徑的⊙O;畫出點(diǎn)C分AB所得兩段AC與CB的函數(shù)圖象(線段);設(shè)圓心O到該函數(shù)圖象的距離為h,則h= ,該函數(shù)圖象與⊙O的位置關(guān)系是 .
(提升)問題2,一個直角三角形斜邊長為c(定值),設(shè)其面積為S,周長為x,證明S是x的二次函數(shù),求該函數(shù)關(guān)系式,并求x的取值范圍和相應(yīng)S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,以為邊作等邊,延長,分別交于點(diǎn),連接、、與相交于點(diǎn),給出下列結(jié)論:①;②;③;④,其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O相切于E、F、G三點(diǎn),且AB∥CD,OB=6cm,OC=8cm.
(Ⅰ)求證:OB⊥OC;
(Ⅱ)求CG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com