如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線上另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.
(1)填空:點(diǎn)B的坐標(biāo)為(_ ),點(diǎn)C的坐標(biāo)為(_ );
(2)連接OA,若△OAC為等腰三角形.
①求此時(shí)拋物線的解析式;
②如圖2,將△OAC沿x軸翻折后得△ODC,點(diǎn)M為①中所求的拋物線上點(diǎn)A與點(diǎn)C兩點(diǎn)之間一動(dòng)點(diǎn),且點(diǎn)M的橫坐標(biāo)為m,過動(dòng)點(diǎn)M作垂直于x軸的直線l與CD交于點(diǎn)N,試探究:當(dāng)m為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.
解:(1)B(3,0),C(8,0)
(2)①作AE⊥OC,垂足為點(diǎn)E
∵△OAC是等腰三角形,∴OE=EC=×8=4,∴BE=4-3=1
又∵∠BAC=90°,∴△ACE∽△BAE,∴=
∴AE2=BE·CE=1×4,∴AE=2
∴點(diǎn)A的坐標(biāo)為 (4,2)
把點(diǎn)A的坐標(biāo) (4,2)代入拋物線y=nx2-11nx+24n,得n=-
∴拋物線的解析式為y=-x2+x-12
②∵點(diǎn)M的橫坐標(biāo)為m,且點(diǎn)M在①中的拋物線上
∴點(diǎn)M的坐標(biāo)為 (m,-m2+m-12),由①知,點(diǎn)D的坐標(biāo)為(4,-2),
則C、D兩點(diǎn)的坐標(biāo)求直線CD的解析式為y=x-4
∴點(diǎn)N的坐標(biāo)為 (m,m-4)
∴MNm2+m-12)-(m-4)=-m2+5m-8
∴S四邊形AMCN=S△AMN+S△CMN=MN·CE=(-m2+5m-8)×4=-(m-5)2+9
∴當(dāng)m=5時(shí),S四邊形AMCN=9
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(1)如圖,將拋物線y1=2x2向右平移2個(gè)單位,得到拋物線y2的圖象,則y2= ;
(2)P是拋物線y2對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(11·大連)(本題12分)如圖15,拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B (3,
0)、C(0,3)三點(diǎn),對(duì)稱軸與拋物線相交于點(diǎn)P、與直線BC相交于點(diǎn)M,連接PB.
(1)求該拋物線的解析式;
(2)拋物線上是否存在一點(diǎn)Q,使△QMB與△PMB的面積相等,若存在,求點(diǎn)Q的坐標(biāo);
若不存在,說明理由;
(3)在第一象限、對(duì)稱軸右側(cè)的拋物線上是否存在一點(diǎn)R,使△RPM與△RMB的面積相
等,若存在,直接寫出點(diǎn)R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東省九年級(jí)中考數(shù)學(xué)試卷4(解析版) 題型:解答題
如圖1,拋物線y=nx2-11nx+24n (n<0) 與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),拋物線上另有一點(diǎn)A在第一象限內(nèi),且∠BAC=90°.
(1)填空:點(diǎn)B的坐標(biāo)為(_ ),點(diǎn)C的坐標(biāo)為(_ );
(2)連接OA,若△OAC為等腰三角形.
①求此時(shí)拋物線的解析式;
②如圖2,將△OAC沿x軸翻折后得△ODC,點(diǎn)M為①中所求的拋物線上點(diǎn)A與點(diǎn)C兩點(diǎn)之間一動(dòng)點(diǎn),且點(diǎn)M的橫坐標(biāo)為m,過動(dòng)點(diǎn)M作垂直于x軸的直線l與CD交于點(diǎn)N,試探究:當(dāng)m為何值時(shí),四邊形AMCN的面積取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com