【題目】如圖,在正方形ABCD中,點(diǎn)P從點(diǎn)A出發(fā),沿著正方形的邊順時(shí)針?lè)较蜻\(yùn)動(dòng)一周,則△APC的面積y與點(diǎn)P運(yùn)動(dòng)的路程x之間形成的函數(shù)關(guān)系圖象大致是( )

A.
B.
C.
D.

【答案】C
【解析】解:設(shè)正方形的邊長(zhǎng)為a,

當(dāng)P在AB邊上運(yùn)動(dòng)時(shí),y= ax;

當(dāng)P在BC邊上運(yùn)動(dòng)時(shí),y= a(2a﹣x)=﹣ ax+a2;

當(dāng)P在CD邊上運(yùn)動(dòng)時(shí),y= a(x﹣2a)= ax﹣a2;

當(dāng)P在AD邊上運(yùn)動(dòng)時(shí),y= a(4a﹣x)=﹣ ax﹣2a2

大致圖象為:

故選C.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的圖象的相關(guān)知識(shí),掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保護(hù)環(huán)境,某化工廠一期工程完成后購(gòu)買了3臺(tái)甲型和2臺(tái)乙型污水處理設(shè)備,共花費(fèi)資金54萬(wàn)元,且每臺(tái)乙型設(shè)備的價(jià)格是每臺(tái)甲型設(shè)備價(jià)格的75%.

1)請(qǐng)你計(jì)算每臺(tái)甲型設(shè)備和每臺(tái)乙型設(shè)備的價(jià)格各是多少元?

2)今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購(gòu)買甲、乙兩種型號(hào)設(shè)備共8臺(tái)用于二期工程的污水處理,預(yù)算本次購(gòu)買資金不超過(guò)84萬(wàn)元;實(shí)際運(yùn)行中發(fā)現(xiàn),每臺(tái)甲型設(shè)備每月能處理污水200噸,每臺(tái)乙型設(shè)備每月能處理污水160噸,預(yù)計(jì)二期工程完成后每月將產(chǎn)生不少于1300噸污水,請(qǐng)你求出用于二期工程的污水處理設(shè)備的所有購(gòu)買方案.

3)經(jīng)測(cè)算:每年用于每臺(tái)甲型設(shè)備的各種維護(hù)費(fèi)和電費(fèi)為1萬(wàn)元,每年用于每臺(tái)乙型設(shè)備的各種維護(hù)費(fèi)和電費(fèi)為15萬(wàn)元.在(2)中的方案中,哪種購(gòu)買方案使得設(shè)備的各種維護(hù)費(fèi)和電費(fèi)總費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)初三年級(jí)的同學(xué)參加了一項(xiàng)節(jié)能的社會(huì)調(diào)查活動(dòng),為了了解家庭用電的情況,他們隨即調(diào)查了某地50個(gè)家庭一年中生活用電的電費(fèi)支出情況,并繪制了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖(費(fèi)用取整數(shù),單位:元).

分組/元

頻數(shù)

頻率

1000<x<1200

3

0.060

1200<x<1400

12

0.240

1400<x<1600

18

0.360

1600<x<1800

a

0.200

1800<x<2000

5

b

2000<x<2200

2

0.040

合計(jì)

50

1.000


請(qǐng)你根據(jù)以上提供的信息,解答下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布表a= , b= , 和頻數(shù)分布直方圖
(2)這50個(gè)家庭電費(fèi)支出的中位數(shù)落在哪個(gè)組內(nèi)?
(3)若該地區(qū)有3萬(wàn)個(gè)家庭,請(qǐng)你估計(jì)該地區(qū)有多少個(gè)一年電費(fèi)支出低于1400元的家庭?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件工程甲獨(dú)做50天可完,乙獨(dú)做75天可完,現(xiàn)在兩個(gè)人合作,但是中途乙因事離開(kāi)幾天,從開(kāi)工后40天把這件工程做完,則乙中途離開(kāi)了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,AC為對(duì)角線,點(diǎn)EAC上一點(diǎn),連接EBED.

(1)求證:△BEC≌△DEC;

(2)延長(zhǎng)BEAD于點(diǎn)F,當(dāng)∠BED120°時(shí),求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC與△CDE都是等邊三角形,點(diǎn)B、C、D在同一直線上,ADBE相交于點(diǎn)G,BEAC相交于點(diǎn)F,ADCE相交于點(diǎn)H,則下列結(jié)論:①△ACD≌△BCE;②∠AGB=60°;BF=AH;④△CFH是等邊三角形;⑤連CG,則∠BGC=DGC ;EG+GC=GD. 其中正確的有________.(只要寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)BE分別在直線ACDF上,若∠AGB=∠EHF,∠C=∠D,可以證明

A=∠F.請(qǐng)完成下面證明過(guò)程中的各項(xiàng)“填空”

證明:∵∠AGB=∠EHF(已知)

AGB   (對(duì)頂角相等)

∴∠EHF=∠DGF(等量代換)

   EC(理由:   

∴∠   =∠DBA(兩直線平行,同位角相等)

又∵∠C=∠D,∴∠DBA   (等量代換)

DF   (內(nèi)錯(cuò)角相等,兩直線平行)

∴∠A=∠F(理由:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上,且BE=CD,EPAC交直線CD于點(diǎn)P,交直線AB于點(diǎn)F,ADP=ACB.

(1)圖1中是否存在與AC相等的線段?若存在,請(qǐng)找出,并加以證明,若不存在,說(shuō)明理由;

(2)若將點(diǎn)D在線段AB上,點(diǎn)E在線段CB延長(zhǎng)線上改為點(diǎn)D在線段BA延長(zhǎng)線上,點(diǎn)E在線段BC延長(zhǎng)線上,其他條件不變(如圖2).當(dāng)∠ABC=90°,BAC=60°,AB=2時(shí),求線段PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知畫射線,射線,試寫出的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案