【題目】在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分線,將△ABC沿直線CD翻折,點A落在點E處,那么AE的長是

【答案】2
【解析】解:
∵CD是∠ACB的平分線,
∴將△ABC沿直線CD翻折,點A的對應(yīng)點E在直線CB上,
∵∠ABC=90°,AC=5,BC=3,
∴AB=4,
由旋轉(zhuǎn)得:EC=AC=5,
∴BE=5﹣3=2,
在Rt△ABE中,由勾股定理得:AE= = =2
所以答案是:2
【考點精析】本題主要考查了勾股定理的概念和翻折變換(折疊問題)的相關(guān)知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,⊙O的半徑為r(r>0),若點P′在射線OP上,滿足OP′OP=r2 , 則稱點P′是點P關(guān)于⊙O的“反演點”. 如圖2,⊙O的半徑為4,點B在⊙O上,∠BOA=60°,OA=8,若點A′,B′分別是點A,B關(guān)于⊙O的反演點,求A′B′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△ABC,AB=12,以AB為直徑的半圓與BC邊交于點D,過點D作DF⊥AC,垂足為F,過點F作FG⊥AB,垂足為G,連結(jié)GD.
(1)求證:DF是⊙O的切線;
(2)求FG的長;
(3)求tan∠FGD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于小島C的南偏東60°方向,距離小島120海里的A處,該海輪從A處正北方向航行一段距離后,到達位于小島C北偏東45°方向的B處.

(1)求該海輪從A處到B處的航行過程中與小島C之間的最短距離(記過保留根號);
(2)如果該海輪以每小時20海里的速度從B處沿BC方向行駛,求它從B處到達小島C的航行時間(結(jié)果精確到0.1小時).(參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,將△ABC繞點A逆時針旋轉(zhuǎn)60° , 點B、C分別落在點B'、C'處,聯(lián)結(jié)BC'與AC邊交于點D,那么 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列拋物線中,與拋物線y=x2﹣2x+4具有相同對稱軸的是(
A.y=4x2+2x+1
B.y=2x2﹣4x+1
C.y=2x2﹣x+4
D.y=x2﹣4x+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了增強學生體質(zhì),推動“陽光體育”運動的廣泛開展,學校準備購買一批運動鞋供學生借用,學校體育部從八年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和②,請根據(jù)相關(guān)信息,解答下列問題:
(1)圖①中m的值為
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 , 中位數(shù)是;
(3)該校計劃購買200雙運動鞋,校體育部對各種鞋號運動鞋的購買數(shù)量做出如下估計:

根據(jù)樣本數(shù)據(jù)分析得知:各種鞋號的運動鞋購買數(shù)量如下:
35號:200×30%=60(只)
36號:200×25%=50(只)

請你分析:校體育部的估計是否合理?如果合理,請將體育部的估算過程補充完整,若不合理,請說明理由,并且給學校提一個合理化的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax+bx+c上部分點的橫坐標x,縱坐標y的對應(yīng)值如下表,從下表可知:

x

-2

-1

0

1

2

y

0

4

6

6

4

下列說法錯誤的是( )。
A.拋物線與x軸的另一個交點為(3,0);
B.函數(shù)的最大值為6;
C.拋物線的對稱軸是直線x=0.5;
D.在對稱軸的左側(cè),y隨x的增大而增大。

查看答案和解析>>

同步練習冊答案