【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點(diǎn),過(guò)E作直線l∥BC,交直線CD于點(diǎn)F.將直線l向右平移,設(shè)平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過(guò)的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.

信息讀取
(1)梯形上底的長(zhǎng)AB=
(2)直角梯形ABCD的面積=;
圖象理解
(3)寫出圖②中射線NQ表示的實(shí)際意義;
(4)當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)關(guān)系式;
問(wèn)題解決
(5)當(dāng)t為何值時(shí),直線l將直角梯形ABCD分成的兩部分面積之比為1:3.

【答案】
(1)2
(2)12
(3)

解:當(dāng)平移距離BE大于等于4時(shí),直角梯形ABCD被直線l掃過(guò)的面積恒為12


(4)

解:當(dāng)2<t<4時(shí),如圖所示,

直角梯形ABCD被直線l掃過(guò)的面積S=S直角梯形ABCD﹣SRtDOF

=12﹣ (4﹣t)×2(4﹣t)=﹣t2+8t﹣4


(5)

解:①當(dāng)0<t<2時(shí),有4t:(12﹣4t)=1:3,解得t=

②當(dāng)2<t<4時(shí),有(﹣t2+8t﹣4):[12﹣(﹣t2+8t﹣4)]=3:1,

即t2﹣8t+13=0,

解得t=4﹣ ,t=4+ (舍去).

當(dāng)t= 或t=4﹣ 時(shí),直線l將直角梯形ABCD分成的兩部分面積之比為1:3


【解析】解:由題意得:(1)AB=2.(2)S梯形ABCD=12.
(1)根據(jù)圖②可知,當(dāng)0≤t≤2時(shí),E在線段AB上運(yùn)動(dòng)(包括與A、B重合),在此期間E點(diǎn)運(yùn)動(dòng)了2,因此可求得AB的長(zhǎng)為2.(2)根據(jù)圖形可知:當(dāng)2<t<4時(shí),E在AB的延長(zhǎng)線上,且F在D點(diǎn)左側(cè),此期間E點(diǎn)運(yùn)動(dòng)了2,因此下底長(zhǎng)為2+2=4,根據(jù)t=2時(shí),重合部分的面積為8可求出梯形的高為4,因此梯形的面積為 ×(2+4)×4=12.(3)當(dāng)t>4時(shí),直線l與梯形沒(méi)有交點(diǎn),因此掃過(guò)的面積恒為梯形的面積12.(4)當(dāng)2<t<4時(shí),直線掃過(guò)梯形的部分是個(gè)五邊形,如果設(shè)直線l與AD的交點(diǎn)為0,那么重合部分的面積可用梯形的面積減去三角形OFD的面積來(lái)求得.梯形的面積在(2)中已經(jīng)求得.三角形OFD中,底邊DF=4﹣t,而DF上的高,可用DF的長(zhǎng)和∠BCD的正切值求出,由此可得出S,t的函數(shù)關(guān)系式.(5)本題要分情況討論:①當(dāng)0<t<2時(shí),重合部分的平行四邊形的面積:直角梯形AEFD的面積=1:3,據(jù)此可求出t的值.②當(dāng)2<t<4時(shí),重合部分的五邊形的面積:三角形OFD的面積=3:1,由此可求出t的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD右側(cè)作△ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=_______度;

(2)如圖2如果∠BAC=60°,則∠BCE=______度;

(3)設(shè)∠BAC=BCE=

①如圖3,當(dāng)點(diǎn)D在線段BC上移動(dòng),則之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

②當(dāng)點(diǎn)D在直線BC上移動(dòng),請(qǐng)直接寫出之樣的數(shù)量關(guān)系,不用證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有甲、乙兩個(gè)容器,分別裝有進(jìn)水管和出水管 ,兩容器的進(jìn)出水速度不變,先打開(kāi)乙容器的進(jìn)水管,2分鐘時(shí)再打開(kāi)甲容器的進(jìn)水管,又過(guò)2分鐘關(guān)閉甲容器的進(jìn)水管,再過(guò)4分鐘同時(shí)打開(kāi)甲容器的進(jìn)、出水管。直到12分鐘時(shí),同時(shí)關(guān)閉兩容器的進(jìn)出水管。打開(kāi)和關(guān)閉水管的時(shí)間忽略不計(jì)。容器中的水量y()與乙容器注水時(shí)間x()之間的關(guān)系如圖所示

(1)求甲容器的進(jìn)、出水速度;

(2)當(dāng)時(shí),在這過(guò)程中是否存在兩容器的水量相等?若存在,求出此時(shí)x的值;

(3)如果在乙容器中再裝一個(gè)進(jìn)水管,其進(jìn)水速度是2升/分,若使兩容器第12分鐘時(shí)的水量相等 ,則應(yīng)該在第幾分鐘打開(kāi)此進(jìn)水管?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠A=90°,CE⊥BD于E,AB=EC
(1)求證:△ABD≌△ECB;
(2)若∠EDC=65°,求∠ECB的度數(shù);
(3)若AD=3,AB=4,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上

1在網(wǎng)格的格點(diǎn)中,AB為邊畫一個(gè)ABC,使三角形另外兩邊長(zhǎng)為 ;

2若點(diǎn)P在圖中所給網(wǎng)格中的格點(diǎn)上,△APB是等腰三角形,滿足條件的點(diǎn)P共有 個(gè)

3)若將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,寫出旋轉(zhuǎn)后點(diǎn)B的坐標(biāo) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算或解方程

(1)﹣14+(﹣5)2×(﹣)+|0.8﹣1|

(2)﹣1.53×0.75+1.53×+×1.53

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:(a≠0),即a的負(fù)P次冪等于ap次冪的倒數(shù).例:

(1)計(jì)算:__;__;

(2)如果,那么p=__;如果,那么a=__;

(3)如果,且a、p為整數(shù),求滿足條件的a、p的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一個(gè)軸對(duì)稱圖形,A(3,-2),B(3,﹣6)兩點(diǎn)在此圖形上且互為對(duì)稱點(diǎn),若此圖形上有一個(gè)點(diǎn)C(﹣2,+1).

(1)求點(diǎn)C的對(duì)稱點(diǎn)的坐標(biāo).

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+8x軸,y軸分別交于點(diǎn)ABMOB上的一點(diǎn),若將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)B′處,則直線AM的解析式為  

查看答案和解析>>

同步練習(xí)冊(cè)答案