如圖1,菱形ABCD的對角線交于點(diǎn)O,AC=2BD,點(diǎn)P是AO上一個動點(diǎn),過點(diǎn)P作AC的垂線交菱形的邊于M,N兩點(diǎn).設(shè)AP=x,△OMN的面積為y, 表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則菱形的周長為(   )
A.2B.C.4D.
D.

試題分析:∵菱形ABCD的對角線交于點(diǎn)O,AC=2BD,∴AO=2DO.
由圖1可知,△ANP∽△ADO,∴NP=.∴.
由圖2可知,時,,∴.
.
∴根據(jù)勾股定理,得.
∴菱形的周長為.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,將矩形ABCD沿BD對折,點(diǎn)A落在E處,BE與CD相交于F,若AD=3,BD=6.
(1)求證:△EDF≌△CBF;
(2)求∠EBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)C、F在BE上,BF=CE,AB=DE,∠B=∠E。求證:∠ACE=∠DFE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若一個多邊形的內(nèi)角和為1080°,則這個多邊形的邊數(shù)是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,定義:在Rt△ABC中,∠C =90°,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=.
根據(jù)上述角的余切定義,解答下列問題:
(1)ctan60°=     .
(2)求ctan15°的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在菱形ABCD中,AC為對角線,點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線段AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

等邊△ABC的邊長為2,P是BC邊上的任一點(diǎn)(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點(diǎn)M、N(如圖1)。
(1)求證:AM=AN;
(2)設(shè)BP=x。
①若,BM=,求x的值;
②記四邊形ADPE與△ABC重疊部分的面積為S,求S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE,分別與邊AB、AC交于點(diǎn)G、H(如圖2),當(dāng)x取何值時,∠BAD=150?并判斷此時以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD;其中正確結(jié)論的是(    )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

做一個直角三角形的木架,以下四組木棒中,符合條件的是( 。
A.12cm,7cm,5cmB.12cm,15cm,17cm
C.8cm,12cm,15cmD.8cm,15cm,17cm

查看答案和解析>>

同步練習(xí)冊答案