【題目】如圖,拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線.動(dòng)點(diǎn)軸上運(yùn)動(dòng),過點(diǎn)軸,交拋物線于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

(Ⅰ)求拋物線的解析式和直線的解析式;

(Ⅱ)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),求線段的最大值;

(Ⅲ)當(dāng)以、、、為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出的值.

【答案】(1)y=﹣x2+2x+3,y=﹣x+3;(2)當(dāng)m=時(shí),MN有最大值,MN的最大值為;(3)

【解析】(1)由A、C兩點(diǎn)的坐標(biāo)利用待定系數(shù)法可求得拋物線解析式,則可求得B點(diǎn)坐標(biāo),再利用待定系數(shù)法可求得直線BC的解析式;

(2)用m可分別表示出N、M的坐標(biāo),則可表示出MN的長(zhǎng),再利用二次函數(shù)的最值可求得MN的最大值;

(3) 由條件可得出MN=OC,結(jié)合(2)可得到關(guān)于m的方程,可求得m的值

本題解析:

(1)∵拋物線過A、C兩點(diǎn),

∴代入拋物線解析式可得 ,解得

∴拋物線解析式為y=﹣x2+2x+3,

令y=0可得,﹣x2+2x+3=0,解x1=﹣1,x2=3,

∵B點(diǎn)在A點(diǎn)右側(cè),

∴B點(diǎn)坐標(biāo)為(3,0),

設(shè)直線BC解析式為y=kx+s,

把B、C坐標(biāo)代入可得 ,解得

∴直線BC解析式為y=﹣x+3;

(2)∵PM⊥x軸,點(diǎn)P的橫坐標(biāo)為m,

∴M(m,﹣m2+2m+3),N(m,- m+3),

∵P在線段OB上運(yùn)動(dòng),

∴M點(diǎn)在N點(diǎn)上方,

∴MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣2+

∴當(dāng)m=時(shí),MN有最大值,MN的最大值為

(3)∵PM⊥x軸,

∴MN∥OC,

當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),則有OC=MN,

當(dāng)點(diǎn)P在線段OB上時(shí),則有MN=﹣m2+3m,

∴﹣m2+3m=3,此方程無實(shí)數(shù)根,

當(dāng)點(diǎn)P不在線段OB上時(shí),則有MN=﹣m+3﹣(﹣m2+2m+3)=m2﹣3m,

∴m2﹣3m=3,解得m=或m=,

綜上可知當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),m的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸的負(fù)半軸交于點(diǎn),與軸交于點(diǎn),連結(jié),點(diǎn)C(6,)在拋物線上,直線軸交于點(diǎn)

(1)的值及直線的函數(shù)表達(dá)式;

(2)點(diǎn)軸正半軸上,點(diǎn)軸正半軸上,連結(jié)與直線交于點(diǎn),連結(jié)并延長(zhǎng)交于點(diǎn),若的中點(diǎn).

①求證:;

②設(shè)點(diǎn)的橫坐標(biāo)為,求的長(zhǎng)(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一點(diǎn),⊙O交AB于點(diǎn)D,交BC延長(zhǎng)線于點(diǎn)E.連接ED,交AC于點(diǎn)G,且AG=AD.

(1)求證:AB與⊙O相切;

(2)設(shè)⊙O與AC的延長(zhǎng)線交于點(diǎn)F,連接EF,若EF∥AB,且EF5,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在四邊形中,.點(diǎn)為邊上一點(diǎn),將沿直線折疊,使點(diǎn)落在四邊形對(duì)角線上的點(diǎn)處,的延長(zhǎng)線交直線于點(diǎn)

點(diǎn)可以是的中點(diǎn)嗎?請(qǐng)說明理由;

求證:

設(shè),,.當(dāng)四邊形為平行四邊形時(shí),求,,應(yīng)滿足的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=(m≠0)的圖象如圖所示,有以下結(jié)論:①m<1;②在每個(gè)分支上yx的增大而增大;③若點(diǎn)A(-2,a),點(diǎn)B(4,b)在圖象上,則a<b;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P(-x,-y)也在圖象上,則下面選項(xiàng)正確的是( )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)甲.乙兩班分別選5名同學(xué)參加學(xué)雷鋒讀書活動(dòng)演講比賽,其預(yù)賽成績(jī)?nèi)鐖D:

1)根據(jù)上圖求出下表所缺數(shù)據(jù):

平均數(shù)

中位數(shù)

眾數(shù)

方差

甲班

8.5

8.5

乙班

8

1.6

2)根據(jù)上表中的平均數(shù)、中位數(shù)和方差你認(rèn)為哪班的成績(jī)較好?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1l2相互平行,A、Bl1上的兩點(diǎn),C、Dl2上的兩點(diǎn),某人在點(diǎn)A處測(cè)得∠CAB=90°,DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點(diǎn)E(點(diǎn)E在線段AB上),測(cè)得∠DEB=60°,求C、D兩點(diǎn)間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案