【題目】下列說法:①a為任意有理數(shù),a2+1總是正數(shù);②如果a+|a|=0,則a<0;③兩點(diǎn)確定一條直線;④若MA=MB,則點(diǎn)M是線段AB的中點(diǎn).其中正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
【答案】C
【解析】解:a為任意有理數(shù),a2+1總是正數(shù),所以①正確;
如果a+|a|=0,則a≤0,所以②錯(cuò)誤;
兩點(diǎn)確定一條直線,所以③正確;
若MA=MB且M點(diǎn)在線段AB上,則點(diǎn)M是線段AB的中點(diǎn),所以④錯(cuò)誤.
故選C.
【考點(diǎn)精析】掌握兩點(diǎn)間的距離是解答本題的根本,需要知道同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)多邊形的每一個(gè)外角都等于40°,則這個(gè)多邊形的邊數(shù)是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家限購以來,二手房和新樓盤的成交量迅速下降.據(jù)統(tǒng)計(jì),江陰在限購前某季度二手房和新樓盤成交量為9500套.限購后,同一季度二手房和新樓盤的成交量共4425套.其中二手房成交量比限購前減少55﹪,新樓盤成交量比限購前減少52﹪.
(1)問限購后二手房和新樓盤各成交多少套?
(2)在成交量下跌的同時(shí),房價(jià)也大幅跳水.某樓盤限購前均價(jià)為12000元/m2,限購后,無人問津,房價(jià)進(jìn)行調(diào)整,二次下調(diào)后均價(jià)為7680元/m2,求平均每次下調(diào)的百分率?總理表態(tài):讓房價(jià)回歸合理價(jià)位.合理價(jià)位為房價(jià)是可支配收入的3~6倍,假設(shè)江陰平均每戶家庭(三口之家)的年可支配收入為9萬元,每戶家庭的平均住房面積為80 m2,問下調(diào)后的房價(jià)回到合理價(jià)位了嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AD、AE分別是△ABC的高和角平分線.
(1)若∠B=30°,∠C=50°,求∠DAE的度數(shù).
(2)試問∠DAE與∠C﹣∠B有怎樣的數(shù)量關(guān)系?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0),C(﹣1,0).
(1)將△ABC向右平移5個(gè)單位,再向下平移4個(gè)單位得△A1B1C1,圖中畫出△A1B1C1,平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是______.
(2)將△ABC沿x軸翻折△A2BC,圖中畫出△A2BC,翻折后點(diǎn)A對(duì)應(yīng)點(diǎn)A2坐標(biāo)是______.
(3)將△ABC向左平移2個(gè)單位,則△ABC掃過的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:l1∥l2∥l3∥l4,平行線l1與l2、l2與l3、l3與l4之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在l1、l2、l3、l4這四條平行線上的四邊形稱為“格線四邊形”.
(1)如圖1,正方形ABCD為“格線四邊形”,則正方形ABCD的邊長為 .
(2)矩形ABCD為“格線四邊形”,其長:寬=2:1,求矩形ABCD的寬.(可用備用圖)
(3)如圖1,EG過正方形ABCD的頂點(diǎn)D且垂直l1于點(diǎn)E,分別交l2,l4于點(diǎn)F,G.將∠AEG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到∠AE′D′(如圖2),點(diǎn)D′在直線l3上,以AD′為邊在E′D′左側(cè)作菱形AB′C′D′,使B′,C′分別在直線l2,l4上,求菱形AB′C′D′的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角墻角AOB(OA⊥OB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉,且地面矩形AOBC的面積為96m2.
(1)求地面矩形AOBC的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價(jià)分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com