【題目】小明從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:①abc>0;②a﹣b+c<0;③b+2c>0; ④a﹣2b+4c>0;⑤2a=3b
你認為其中正確信息的個數(shù)有( )
A.2個
B.3個
C.4個
D.5個
【答案】C
【解析】解:
∵拋物線開口向下,與y軸的交點位于x軸的上方,
∴a<0,c>0,
∵對稱軸為x=﹣ =﹣ ,
∴2a=3b<0,
∴abc>0,故①⑤正確;
∵當x=﹣1時,y>0,當x=﹣ 時,y>0
∴a﹣b+c>0,故②不正確;
∴ a﹣ b+c>0,即a﹣2b+4c>0,故④正確;
∵a﹣b+c>0,2a=3b,
∴ b﹣b+c>0,即b+2c>0,故③正確;
綜上可知正確的有①③④⑤共4個,
故選C.
【考點精析】解答此題的關鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識,掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并回答問題. 事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結論就是著名的勾股定理.請利用這個結論,完成下面活動:
(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為 .
(2)如圖1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的長度.
(3)如圖2,點A在數(shù)軸上表示的數(shù)是 ,請用類似的方法在圖2數(shù)軸上畫出表示數(shù)的B點(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點A逆時針旋轉60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關系
(2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.
(1)請直接寫出y與x的函數(shù)關系式;
(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?
(3)設該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E
(1)求A、B的坐標;
(2)求直線BC的解析式;
(3)當線段DE的長度最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解放中學為了了解學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機抽取了部分學生進行調查(每人限選1項),現(xiàn)將調查結果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動畫的學生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.
(1)如圖1,若P為AB邊上一點以PD,PC為邊作平行四邊形PCQD,請問對角線PQ的長是否存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
(2)若P為AB邊上任意一點,延長PD到E,使DE=PD,再以PE,PC為邊作平行四邊形PCQE,請問對角線PQ的長是否也存在最小值?如果存在,請直接寫出最小值,如果不存在,請說明理由.
(3)如圖2,若P為直線DC上任意一點,延長PA到E,使AE=AP,以PE、PB為邊作平行四邊形PBQE,請問對角線PQ的長是否存在最小值?如果存在,請求出最小值,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABO的三個頂點的坐標分別為O(0,0),A(5,0),B(2,4).
(1)求△OAB的面積;
(2)若O,A兩點的位置不變,P點在什么位置時,△OAP的面積是△OAB面積的2倍?
(3)若B(2,4),O(0,0)不變,M點在x軸上,M點在什么位置時,△OBM的面積是△OAB面積的2倍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D點,與y軸交于C點,與x軸交于A、B兩點,A點在原點的左側,B點的坐標為(3,0),OB=OC,OC=3OA.
(1)求這個二次函數(shù)的表達式;
(2)經(jīng)過C、D兩點的直線,與x軸交于點E,在該拋物線上是否存在這樣的點F,使以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com