【題目】點A為雙曲線y=(k≠0)上一點,B為x軸上一點,且△AOB為等邊三角形,△AOB的邊長為2,則k的值為( )
A. 2 B. ±2 C. D. ±
【答案】D
【解析】當(dāng)k>0時,設(shè)點A在第一象限,過A作AC⊥OB于C,
如圖①,
∵OB=2,
∴B點的坐標(biāo)是(2,0).
∵△AOB為等邊三角形,∠AOC=60°,AO=2,
∴OC=1, ,
∴A點的坐標(biāo)是(1, ).
∵點A為雙曲線 (k≠0)上的一點,
∴.
當(dāng)k<0時,設(shè)點A在第二象限,過A作AC⊥OB于C,如圖②.
∵OB=2.
∴B點的坐標(biāo)是(-2,0).
∵△AOB為等邊三角形,∠AOC=60°,AO=2,
∴OC=1, ,
∴A點的坐標(biāo)是(-1, ).
∵點A為雙曲線 (k≠0)上的一點,
∴.
綜上, .
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
某公司經(jīng)銷農(nóng)產(chǎn)品業(yè)務(wù),以3萬元/噸的價格向農(nóng)戶收購農(nóng)產(chǎn)品后,以甲、乙兩種方式進(jìn)行銷售,甲方式包裝后直接銷售;乙方式深加工后再銷售.甲方式農(nóng)產(chǎn)品的包裝成本為1萬元/噸,根據(jù)市場調(diào)查,它每噸平均銷售價格y(單位:萬元)與銷售量m(單位:噸)之間的函數(shù)關(guān)系為y = -m+14(2≤m≤8);乙方式農(nóng)產(chǎn)品深加工等(不含進(jìn)價)總費(fèi)用S(單位:萬元)與銷售量n(單位:噸)之間的函數(shù)關(guān)系是S=3n+12,平均銷售價格為9萬元/噸.
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)是(-,)
(1)該公司收購了20噸農(nóng)產(chǎn)品,其中甲方式銷售農(nóng)產(chǎn)品x噸,其余農(nóng)產(chǎn)品用乙方式銷售,經(jīng)銷這20噸農(nóng)產(chǎn)品所獲得的毛利潤為w萬元(毛利潤=銷售總收入-經(jīng)營總成本).
①直接寫出:甲方式購買和包裝x噸農(nóng)產(chǎn)品所需資金為_________萬元;乙方式購買和加工其余農(nóng)產(chǎn)品所需資金為_________萬元;
②求出w關(guān)于x的函數(shù)關(guān)系式;
③若農(nóng)產(chǎn)品全部銷售該公司共獲得了48萬元毛利潤,求x的值;
④若農(nóng)產(chǎn)品全部售出,該公司的最小利潤是多少.
(2)該公司現(xiàn)有流動資金132萬元,若將現(xiàn)有流動資金全部用于經(jīng)銷農(nóng)產(chǎn)品,
①其中甲方式經(jīng)銷農(nóng)產(chǎn)品x噸,則總經(jīng)銷量p為__________噸(用含x的代數(shù)式表示);
②當(dāng)x為何值時,使公司獲得最大毛利潤,并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在離水面高度為5m的岸上有人用繩子拉船靠岸,開始繩子與水面的夾角為30°,此人以每秒0.5m的速度收繩.
(1)8秒后船向岸邊移動了多少米?
(2)寫出還沒收的繩子的長度S米與收繩時間t秒的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1 ;
(2)寫出點A1 , B1 , C1的坐標(biāo)(直接寫答案), A1________ ,B1________ ,C1________;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A是反比例函數(shù)y=(k≠0)圖象上一點,AB⊥x軸于B點,一次函數(shù)y=ax+b(a≠0)的圖象交y軸于D(0,-2),交x軸于C點,并與反比例函數(shù)的圖象交于A,E兩點,連接OA,若△AOD的面積為4,且點C為OB中點.
(1)分別求雙曲線及直線AE的解析式;
(2)若點Q在雙曲線上,且S△QAB=4S△BAC,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=70°,將△ABC繞點A逆時針旋轉(zhuǎn),得到△AB'C',連接C'C.若C'C∥AB,則∠BAB'=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 是正方形,點 E,H 分別在 BC,AB 上,點 G 在 BA 的延長線上, 且 CE=AG,DE⊥CH 于 F.
(1)求證:四邊形 GHCD 為平行四邊形.
(2)在不添加任何輔助線的情況下,請直接寫出圖中所有與∠ECF 互余的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com