已知,如圖,正方形的邊長為6,菱形的三個頂點分別在正方形上,,連接

(1)當時,求的面積;

(2)設,用含的代數(shù)式表示的面積;

(3)判斷的面積能否等于,并說明理由.

解:(1)正方形中,

,因此,即菱形的邊長為

中,

,

,,

,即菱形是正方形.

同理可以證明

因此,即點邊上,同時可得

從而

(2)作,為垂足,連結,

,

,

中,,,

,即無論菱形如何變化,點到直線的距離始終為定值2.

因此

(3)若,由,得,此時,在中,

相應地,在中,,即點已經(jīng)不在邊上.

故不可能有

另法:由于點在邊上,因此菱形的邊長至少為,

當菱形的邊長為4時,點邊上且滿足,此時,當點逐漸向右運動至點時,的長(即菱形的邊長)將逐漸變大,最大值為

此時,,故

而函數(shù)的值隨著的增大而減小,

因此,當時,取得最小值為

又因為,

所以,的面積不可能等于1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,正方形的邊長為1,可以算出一個正方形的對角線長為
2

(1)求兩個正方形并排成的矩形的對角線長及三個正方形并排成的矩形的對角線長,進而猜想出n個正方形并排成的矩形的對角線長;
(2)在圖(2)中找出一對相似三角形并加以說明;
(3)由圖(3)在下列所給的三個結論中,選擇一個正確的結論加以證明:
①∠BCE+∠BDE=45°;②∠BEC+∠BED=45°;③∠BEC+∠DFE=45°.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2007年初中畢業(yè)升學考試(江蘇常州卷)數(shù)學(帶解析) 題型:解答題

已知,如圖,正方形的邊長為6,菱形的三個頂點分別在正方形上,,連接
(1)當時,求的面積;
(2)設,用含的代數(shù)式表示的面積;
(3)判斷的面積能否等于,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,正方形的邊長為1,可以算出一個正方形的對角線長為數(shù)學公式
(1)求兩個正方形并排成的矩形的對角線長及三個正方形并排成的矩形的對角線長,進而猜想出n個正方形并排成的矩形的對角線長;
(2)在圖(2)中找出一對相似三角形并加以說明;
(3)由圖(3)在下列所給的三個結論中,選擇一個正確的結論加以證明:
①∠BCE+∠BDE=45°;②∠BEC+∠BED=45°;③∠BEC+∠DFE=45°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,正方形的邊長為1,可以算出一個正方形的對角線長為
2

(1)求兩個正方形并排成的矩形的對角線長及三個正方形并排成的矩形的對角線長,進而猜想出n個正方形并排成的矩形的對角線長;
(2)在圖(2)中找出一對相似三角形并加以說明;
(3)由圖(3)在下列所給的三個結論中,選擇一個正確的結論加以證明:
①∠BCE+∠BDE=45°;②∠BEC+∠BED=45°;③∠BEC+∠DFE=45°.

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:《第24章 圖形的相似》2009年單元綜合測試(解析版) 題型:解答題

已知:如圖,正方形的邊長為1,可以算出一個正方形的對角線長為
(1)求兩個正方形并排成的矩形的對角線長及三個正方形并排成的矩形的對角線長,進而猜想出n個正方形并排成的矩形的對角線長;
(2)在圖(2)中找出一對相似三角形并加以說明;
(3)由圖(3)在下列所給的三個結論中,選擇一個正確的結論加以證明:
①∠BCE+∠BDE=45°;②∠BEC+∠BED=45°;③∠BEC+∠DFE=45°.

查看答案和解析>>

同步練習冊答案