已知,如圖,正方形的邊長為6,菱形的三個頂點分別在正方形邊上,,連接.
(1)當時,求的面積;
(2)設,用含的代數(shù)式表示的面積;
(3)判斷的面積能否等于,并說明理由.
解:(1)正方形中,,.
又,因此,即菱形的邊長為.
在和中,,
,,
..
,,
,即菱形是正方形.
同理可以證明.
因此,即點在邊上,同時可得,
從而.
(2)作,為垂足,連結,
,,
,.
.
在和中,,,
.
,即無論菱形如何變化,點到直線的距離始終為定值2.
因此.
(3)若,由,得,此時,在中,.
相應地,在中,,即點已經(jīng)不在邊上.
故不可能有.
另法:由于點在邊上,因此菱形的邊長至少為,
當菱形的邊長為4時,點在邊上且滿足,此時,當點逐漸向右運動至點時,的長(即菱形的邊長)將逐漸變大,最大值為.
此時,,故.
而函數(shù)的值隨著的增大而減小,
因此,當時,取得最小值為.
又因為,
所以,的面積不可能等于1.
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
科目:初中數(shù)學 來源:2007年初中畢業(yè)升學考試(江蘇常州卷)數(shù)學(帶解析) 題型:解答題
已知,如圖,正方形的邊長為6,菱形的三個頂點分別在正方形邊上,,連接.
(1)當時,求的面積;
(2)設,用含的代數(shù)式表示的面積;
(3)判斷的面積能否等于,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:不詳 題型:解答題
2 |
查看答案和解析>>
科目:初中數(shù)學 來源:《第24章 圖形的相似》2009年單元綜合測試(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com