【題目】某天快遞配送員張強一直在一條南北走向的街道上送快遞,如果規(guī)定向北為正,向南為負,這天他從出發(fā)點開始所走的路程(單位:)記錄如下:
,,,,,,,
(1)這天送完最后一個快遞時,張強在出發(fā)點的什么方向?距離出發(fā)點有多遠?
(2)如果張強送完快遞時,需立刻返回出發(fā)點,那么他這天送快遞(含返回)共耗油多少升(每千米耗油)?
【答案】(1)這天送完最后一個快遞時,張強在出發(fā)點的南方,距離出發(fā)點有.(2)他這天送快遞(含返回)共耗油13. 8升.
【解析】
(1)在計算最終位置的時候,既要考慮距離的變化,又要考慮方向的變化,所以包含表示方向的符號一起進行加減運算,即求:的和;
(2)考慮耗油時,只要考慮路程的總變化,不需要考慮方向的變化,所以將上述數值的絕對值相加,并包括回到出發(fā)點的距離求總路程,再計算耗油量.
(1)
,
答:這天送完最后一個快遞時,張強在出發(fā)點的南方,距離出發(fā)點有.
(2)張強行駛總路程為:
,
所以耗油量為,
答:他這天送快遞(含返回)共耗油13. 8升.
科目:初中數學 來源: 題型:
【題目】已知:b是最小的正整數,且a、b滿足(c﹣6)2+|a+b|=0,請回答問題
(1)請直接寫出a、b、c的值.a= ,b= ,c=
(2)a、b、c所對應的點分別為A、B、C,點P為一動點,其對應的數為x,點P在A、B之間運動時,請化簡式子:|x+1|﹣|x﹣1|﹣2|x+5|(請寫出化簡過程)
(3)在(1)(2)的條件下,點A、B、C開始在數軸上運動,若點A以每秒n(n>0)個單位長度的速度向左運動,同時,點B和點C分別以每秒2n個單位長度和5n個單位長度的速度向右運動,假設經過t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為厲行節(jié)能減排,倡導綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:
問題1:單價
該公司早期在甲街區(qū)進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?
問題2:投放方式
該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=x+b的圖象經過點A(﹣2,0),與反比例函數y=(x>0)的圖象交于B(a,4).
(1)求一次函數和反比例函數的表達式;
(2)設M(m﹣2,m)是直線AB上一點,過M作MN∥x軸,交反比例函數y=(x>0)的圖象于點N,若AONM為頂點的四邊形為平行四邊形,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮從家步行到公交車站臺,等公交車去學校. 圖中的折線表示小亮的行程s(km)與所花時間t(min)之間的函數關系. 下列說法錯誤的是
A. 他離家8km共用了30min B. 他等公交車時間為6min
C. 他步行的速度是100m/min D. 公交車的速度是350m/min
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2008年6月1日起,我國實施“限塑令”,開始有償使用環(huán)保購物袋.為了滿足市場需求,某廠家生產兩種款式的布質環(huán)保購物袋,每天共生產4500個,兩種購物袋的成本和售價如下表,設每天生產種購物袋個,每天共獲利元.
成本(元/個) | 售價(元/個) | |
2 | 2.3 | |
3 | 3.5 |
(1)求出關于的函數解析式;
(2)如果該廠每天最多投入成本10000元,那么每天最多獲利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為m.
(1)求該拋物線的函數關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若代數式(4x2-mx-3y+4)-(8nx2-x+2y-3)的值與字母x的取值無關,求代數式(-m2+2mn-n2)-2(mn-3m2)+3(2n2-mn)的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數).
(1)求證無論k為何值,方程總有兩個不相等實數根;
(2)已知函數y=x2+(k﹣5)x+1﹣k的圖象不經過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com