【題目】意大利文藝復(fù)興時(shí)期的著名畫家達(dá)芬奇利用兩張一樣的紙片拼出不一樣的空洞,從而巧妙的證明了勾股定理.小明用兩張全等的的紙片①和②拼成如圖1所示的圖形,中間的六邊形由兩個(gè)正方形和兩個(gè)全等的直角三角形組成.已知六邊形的面積為28,.小明將紙片②翻轉(zhuǎn)后拼成如圖2所示的圖形,其中,則四邊形的面積為(

A.16B.20C.22D.24

【答案】B

【解析】

根據(jù)圖形及勾股定理的驗(yàn)證得到BC2=BG2+CG2,故四邊形的面積等于四邊形的面積加上四邊形的面積,再根據(jù)六邊形的面積為28,即可求解.

∴可設(shè)BG=2a,CG=a,

∵六邊形的面積為28,

4a2+a2+ =28

解得a=2-2)舍去,

根據(jù)圖形及勾股定理的驗(yàn)證得到BC2=BG2+CG2,

∴四邊形的面積=四邊形的面積加上四邊形的面積=4a2+a2=5×4=20

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖I,在中,.點(diǎn)外,連接,作,交于點(diǎn),,,連接.間的等量關(guān)系是______;(不用證明)

2)如圖Ⅱ,,,延長(zhǎng)于點(diǎn),寫出間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)拱形橋架可以近似看作是由等腰梯形ABD8D1和其上方的拋物線D1OD8組成.若建立如圖所示的直角坐標(biāo)系,跨度AB=44米,∠A=45°,AC1=4米,點(diǎn)D2的坐標(biāo)為(-13,-1.69),則橋架的拱高OH=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說(shuō)明理由.

(2)結(jié)論應(yīng)用:① 如圖2,點(diǎn)M,N在反比例函數(shù)(k>0)的圖象上,過(guò)點(diǎn)M作ME⊥y軸,過(guò)點(diǎn)N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.

若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請(qǐng)判斷 MN與EF是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE都是等腰直角三角形,CEBD相交于點(diǎn)M,BDAC于點(diǎn)N.

1)證明:BDCE;

2)證明:BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某甜品店用,兩種原料制作成甲、乙兩款甜品進(jìn)行銷售,制作每份甜品的原料所需用量如下表所示.該店制作甲款甜品份,乙款甜品份,共用去原料2000克.

原料

款式

原料

(克)

原料

(克)

甲款甜品

30

15

乙款甜品

10

20

1)求關(guān)于的函數(shù)表達(dá)式;

2)已知每份甲甜品的利潤(rùn)為5元,每份乙甜品的利潤(rùn)為2.假設(shè)兩款甜品均能全部賣出.若獲得總利潤(rùn)不少于360元,則至少要用去原料多少克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊ABC的邊長(zhǎng)為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),使AE=CF,連接AF、BE相交于點(diǎn)P,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)P經(jīng)過(guò)點(diǎn)的路徑長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線段AC、BC上,且四邊形DEFG是正方形.

(1)試探究線段AECG的關(guān)系,并說(shuō)明理由.

(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=4.

①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)寫出你認(rèn)為正確的關(guān)系,并說(shuō)明理由.

②當(dāng)△CDE為等腰三角形時(shí),求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明隨機(jī)抽取了某校八年級(jí)部分學(xué)生,針對(duì)他們晚上在家學(xué)習(xí)時(shí)間的情況進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.根據(jù)以上信息,解答下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

2)本次抽取的八年級(jí)學(xué)生晚上學(xué)習(xí)時(shí)間的眾數(shù)是 小時(shí),中位數(shù)是 小時(shí);

3)若該校共有 600 名八年級(jí)學(xué)生,則晚上學(xué)習(xí)時(shí)間超過(guò) 1.5 小時(shí)的約有多少名學(xué)生?

查看答案和解析>>

同步練習(xí)冊(cè)答案