【題目】如圖,為直線上一點(diǎn),平分,.
(1)若,求和的度數(shù);
(2)猜想:是否平分?請(qǐng)直接寫出你猜想的結(jié)論;
(3)與互余的角有:______.
【答案】(1),;(2)平分;(3)、.
【解析】
(1)根據(jù)角平分線和直角的性質(zhì),即可得出∠COE,然后根據(jù)平角的性質(zhì)即可得出∠BOE;
(2)根據(jù)角平分線的性質(zhì)得出,然后根據(jù)余角的性質(zhì)得出∠COE=∠BOE,即可得出平分;
(3)根據(jù)余角的性質(zhì),即可判定.
(1)∵平分,,
∴,
∵.
∴,
;
(2)平分
∵平分,
∴
∵
∴∠DOC+∠COE=∠AOD+∠BOE=90°
∴∠COE=∠BOE
∴平分;
(3)由題意,得∠DOE=∠DOC+∠COE=90°
∠AOD+∠BOE=90°,∠AOD=∠DOC
∴與互余的角有:、
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在平行四邊形ABCD中,E是AD上一點(diǎn),AE=AB,∠EAB=60°,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G.使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
小明同學(xué)的思路是:作∠CAM=∠EAB交CE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理解決問題.
參考小明同學(xué)的思路,探究并解決下列問題:
(1)完成上面問題中的證明;
(2)如果將原問題中的“∠EAB=60°”改為“∠EAB=90°”,原問題中的其它條件不變(如圖2),請(qǐng)?zhí)骄烤段EC、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解:線段EG、AG、BG之間的數(shù)量關(guān)系為___________________________________________________.證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】股民小明上星期六買進(jìn)某公司股票1000股,每股20元,下表為本周內(nèi)每日該股票的漲跌情況(單位.元)
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股 漲跌 | +4 | +4.5 | -1 | -2.5 | -5 | +2 |
(1)星期四收盤時(shí),每股是多少元?
(2)本周內(nèi)每股最高價(jià)多少元?最低價(jià)多少元?
(3)已知小明買進(jìn)股票時(shí)付了2%0的手續(xù)費(fèi),賣出時(shí)還需付成交額2%0的手續(xù)費(fèi)和1%0的交易稅,如果小明在星期六收盤前將全部股票賣出,它的收益情況如何?(注:2%0=)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一條可以折疊的數(shù)軸上,點(diǎn)A,B分別表示數(shù)-9和4.
(1)A,B兩點(diǎn)之間的距離為________.
(2)如圖2,如果以點(diǎn)C為折點(diǎn),將這條數(shù)軸向右對(duì)折,此時(shí)點(diǎn)A落在點(diǎn)B的右邊1個(gè)單位長(zhǎng)度處,則點(diǎn)C表示的數(shù)是________.
(3)如圖1,若點(diǎn)A以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),點(diǎn)B以每秒2個(gè)單位長(zhǎng)度的速度也沿?cái)?shù)軸向右運(yùn)動(dòng),那么經(jīng)過多少時(shí)間,A、B兩點(diǎn)相距4個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩人在一次射擊比賽中擊中靶的情況(擊中靶中心“×”所在的圓面為10環(huán),靶中各數(shù)字表示該數(shù)所在圓環(huán)被擊中所得的環(huán)數(shù)),每人射擊了6次.
(1)請(qǐng)用列表法將他倆的射擊成績(jī)統(tǒng)計(jì)出來;
(2)請(qǐng)你運(yùn)用所學(xué)的統(tǒng)計(jì)知識(shí)做出分析,從兩個(gè)不同角度評(píng)價(jià)甲、乙兩人的打靶成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C90°,ACBC,AD是△ABC的角平分線,以D為圓心,DC為半徑作⊙D,交AD于點(diǎn)E.
(1)判斷直線AB與⊙D的位置關(guān)系并證明.
(2)若AC1,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按圖所示的方式放置.點(diǎn)A1、A2、A3,…和點(diǎn)B1、B2、B3,…分別在直線和軸上.已知C1(1,-1),C2(, ),則點(diǎn)A3的坐標(biāo)是________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com