【題目】如圖,矩形紙片ABCD中,點E是AD的中點,且AE=1,BE的垂直平分線MN恰好過點C.則矩形的一邊AB的長度為(
A.1
B.
C.
D.2

【答案】C
【解析】解:如圖,連接EC.
∵FC垂直平分BE,
∴BC=EC(線段垂直平分線的性質(zhì))
又∵點E是AD的中點,AE=1,AD=BC,
故EC=2,
利用勾股定理可得AB=CD= =
故選:C.
【考點精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)和勾股定理的概念的相關知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣(﹣1)=( 。

A.±1B.2C.1D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個四邊形三個內(nèi)角度數(shù)之比為2∶1∶3,第四個內(nèi)角為60°,那么這三個內(nèi)角的度數(shù)分別為______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣1,1),B(﹣3,1),C(﹣1,4).

(1)畫出△ABC關于y軸對稱的△A1B1C1;

(2)將△ABC繞著點B順時針旋轉90°后得到△A2BC2,請在圖中畫出△A2BC2,并求出線段BC旋轉過程中所掃過的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線交x軸于點A,交y軸于點C(0,4),拋物線經(jīng)過點A,交y軸于點B(0,﹣2).點P為拋物線上一個動點,過點P作x軸的垂線PD,過點B作BD⊥PD于點D,連接PB,設點P的橫坐標為m.

(1)求拋物線的解析式;

(2)當△BDP為等腰直角三角形時,求線段PD的長;

(3)如圖2,將△BDP繞點B逆時針旋轉,得到△BD′P′,且旋轉角∠PBP′=∠OAC,當點P的對應點P′落在坐標軸上時,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC與△ADE都是等腰直角三角形,∠C和∠AED都是直角,點E在AB上,如果,△ABC旋轉后能與△ADE重合,那么哪一點是旋轉中心?旋轉了多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰三角形的兩條邊的長分別為5cm和8cm,則它的周長是(
A.13cm
B.18cm
C.21cm
D.18cm或21cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù)中互為相反數(shù)的是( )
A. 和-
B.
C.
D.

查看答案和解析>>

同步練習冊答案