【題目】如圖,已知的半徑為 4,是圓的直徑,點是的切線上的一個動點,連接交于點,弦平行于,連接.
(1)試判斷直線與的位置關(guān)系,并說明理由;
(2)當__________時,四邊形為菱形;
(3)當___________時,四邊形為正方形.
【答案】【解析】(1)證明見解析;⑵60°;⑶ .
【解析】
(1)根據(jù)EF∥AB,可以得到∠FAB和∠CAB的關(guān)系,可證得△ACB≌△AFB,可求得∠AFB=90°,可得出結(jié)論;
(2)根據(jù)四邊形ADFE為菱形,通過變形可以得到∠CAB的度數(shù);
(3)根據(jù)四邊形ACBF為正方形,AC=4,AF⊥AE且AF=AE,利用勾股定理可求得EF的長
(1)BF與⊙A相切,理由如下:
∵EF∥AB,
∴∠AEF=∠CAB,∠AFE=∠FAB,
又∵AE=AF,
∴∠AEF=∠AFE,
∴∠FAB=∠CAB,
在△ABC和△ABF中
∴△ABC≌△ABF(SAS);
∴∠AFB=∠ACB =90°,
∴直線BF與⊙A相切.
(2)連接CF,如右圖所示,
若四邊形ADFE為菱形,則AE=EF=FD=DA,
又∵CE=2AE,CE是圓A的直徑,
∴CE=2EF,∠CFE=90°,
∴∠ECF=30°,
∴∠CEF=60°,
∵EF∥AB,
∴∠AEF=∠CAB,
∴∠CAB=60°,
故答案為60°;
(3)若四邊形ACBF為正方形,則AC=CB=BF=FA=4,且AF⊥AE,
∴
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角三角形ABC中,BC>AB>AC,甲、乙兩人想找一點P,使得∠BPC與∠A互補,其作法分別如下:
(甲)以A為圓心,AC長為半徑畫弧交AB于P點,則P即為所求;
(乙)作過B點且與AB垂直的直線l,作過C點且與AC垂直的直線,交l于P點,則P即為所求.
對于甲、乙兩人的作法,下列敘述何者正確?( )
A. 兩人皆正確 B. 兩人皆錯誤
C. 甲正確,乙錯誤 D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是2020年3月26日全國新冠疫情數(shù)據(jù)表,圖2是3月28日海外各國疫情統(tǒng)計表,圖3是中國和海外的病死率趨勢對比圖,根據(jù)這些圖表,選出下列說法中錯誤的一項( )
A.圖1顯示每天現(xiàn)有確診數(shù)的增加量=累計確診增加量-治愈人數(shù)增加量-死亡人數(shù)增加量.
B.圖2顯示美國累計確診人數(shù)雖然約是德國的兩倍,但每百萬人口的確診人數(shù)大約只有德國的一半.
C.圖2顯示意大利當前的治愈率高于西班牙.
D.圖3顯示大約從3月16日開始海外的病死率開始高于中國的病死率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸是直線x=﹣1,且過點(1,0).頂點位于第二象限,其部分圖象如圖4所示,給出以下判斷:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直線y=2x+2與拋物線y=ax2+bx+c兩個交點的橫坐標分別為x1,x2,則x1+x2+x1x2=5.其中正確的個數(shù)有( 。
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),C(0,3)兩點,點B是拋物線與x軸的另一個交點,點D與點C關(guān)于拋物線對稱軸對稱,作直線AD.點P在拋物線上,過點P作PE⊥x軸,垂足為點E,交直線AD于點Q,過點P作PG⊥AD,垂足為點G,連接AP.設點P的橫坐標為m,PQ的長度為d.
(1)求拋物線的解析式;
(2)求點D的坐標及直線AD的解析式;
(3)當點P在直線AD上方時,求d關(guān)于m的函數(shù)關(guān)系式,并求出d的最大值;
(4)當點P在直線AD上方時,若PQ將△APG分成面積相等的兩部分,直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩位同學參加數(shù)學綜合素質(zhì)測試,各項成績?nèi)缦卤恚海▎挝唬悍郑?/span>
數(shù)與代數(shù) | 空間與圖形 | 統(tǒng)計與概率 | 綜合與實踐 | |
學生甲 | 93 | 93 | 89 | 90 |
學生乙 | 94 | 92 | 94 | 86 |
(1)分別計算甲、乙同學成績的中位數(shù);
(2)如果數(shù)與代數(shù),空間與圖形,統(tǒng)計與概率,綜合與實踐的成績按4:3:1:2計算,那么甲、乙同學的數(shù)學綜合素質(zhì)成績分別為多少分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,與軸交于點,與函數(shù)的圖象的一個交點為.
(1)求,,的值;
(2)將線段向右平移得到對應線段,當點落在函數(shù)的圖象上時,求線段掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com