已知:如圖,正方形ABCD的邊長為a,BM,DN分別平分正方形的兩個外角,且滿足 ∠MAN=45°,連結(jié)MC,NC,MN.
(1)填空:與△ABM相似的三角形是△ ,BM·DN= ;(用含a的代數(shù)式表示)
(2)求∠MCN的度數(shù);
(3)猜想線段BM,DN和MN之間的數(shù)量關(guān)系并證明你的結(jié)論.
(1)NDA,a2;(2)135°;(3)BM2+DN2=MN2,證明見解析.
解析試題分析:(1)如圖(3)由條件可以得出∠BMA=∠3,∠ABM=∠ADN=135°,就可以得出△ABM∽△NDA,利用相似三角形的性質(zhì)就可以的得出BM•DN=a2;(2)由△ABM∽△NDA,可以得出BM:DA=AB:ND,再由正方形的性質(zhì)通過等量代換就可以得出△BCM∽△DNC,利用角的關(guān)系和圓周角的度數(shù)就可以求出結(jié)論;(3)將△AND繞點A順時針旋轉(zhuǎn)90°得到△ABF,連接MF,證明△ABF≌△ADN.利用邊角的關(guān)系得出△BMF是直角三角形,由勾股定理就可以得出結(jié)論.
試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°.
∵BM,DN分別平分正方形的兩個外角,∴∠CBM=∠CDN="45°." ∴∠ABM=∠ADN=135°.
∵∠MAN=45°,∴∠BMA=∠NAD. ∴△ABM∽△NDA. ∴. ∴BM•DN=a2.
(2)由(1)△ABM∽△NDA可得BM:DA=AB:ND.
∵四邊形ABCD是正方形,∴AB=DC,DA=BC,∠ABC=∠BCD=∠ADC=∠BAD=90°.
∴BM:BC=DC:ND.
∵BM,DN分別平分正方形ABCD的兩個外角,∴∠CBM=∠NDC=45°.
∴△BCM∽△DNC.∴∠BCM=∠DNC.
∴∠MCN=360°-∠BCD-∠BCM-∠DCN=270°-(∠DNC+∠DCN)=270°-(180°-∠CDN)=135°.
(3)線段BM,DN和MN之間的等量關(guān)系是BM2+DN2=MN2.證明如下:
如圖,將△AND繞點A順時針旋轉(zhuǎn)90°得到△ABF,連接MF.則△ABF≌△ADN.
∴∠1=∠3,AF=AN,BF=DN,∠AFB=∠AND.∴∠MAF=∠1+∠2=∠2+∠3=∠BAD-∠MAN=45°.
∴∠MAF=∠MAN.
又∵AM=AM,∴△AMF≌△AMN.∴MF=MN.
可得∠MBF=(∠AFB+∠1)+45°=(∠AND+∠3)+45°=90°.
∴在Rt△BMF中,BM2+BF2=FM2.
∴BM2+DN2=MN2.
考點:1.正方形的性質(zhì);2.角平分線的定義;3.全等三角形的判定和性質(zhì);4.勾股定理;5.相似三角形的判定和性質(zhì);6. 旋轉(zhuǎn)變換的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:正方形ABCD的邊長為1,射線AE與射線BC交于點E,射線AF與射線CD交于點F,∠EAF=45°.
(1)如圖1,當點E在線段BC上時,試猜想線段EF、BE、DF有怎樣的數(shù)量關(guān)系?并證明你的猜想.
(2)設(shè)BE=x,DF=y,當點E在線段BC上運動時(不包括點B、C),如圖1,求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍.
(3)當點E在射線BC上運動時(不含端點B),點F在射線CD上運動.試判斷以E為圓心以BE為半徑的⊙E和以F為圓心以FD為半徑的⊙F之間的位置關(guān)系.
(4)當點E在BC延長線上時,設(shè)AE與CD交于點G,如圖2.問⊿EGF與⊿EFA能否相似,若能相似,求出BE的值,若不可能相似,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,矩形ABCD中,AB=21,AD=12,E是CD邊上的一點,CE=5,M是BC邊上的中點,動點P從點A出發(fā),沿AB邊以每秒1個單位長度的速度向終點B運動,連結(jié)PM.設(shè)動點P的運動時間是t秒.
(1)求線段AE的長;
(2)當△ADE與△PBM相似時,求t的值;
(3)如圖2,連接EP,過點P作PH⊥AE于H.①當EP平分四邊形PMEH的面積時,求t的值;②以PE為對稱軸作線段BC的軸對稱圖形B′C′,當線段B′C′與線段AE有公共點時,寫出t的取值范圍(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A'B'C'是以點O為位似中心的位似圖形,它們的頂點都在小正方形的頂點上.
(1)畫出位似中心點O;
(2)直接寫出△ABC與△A′B′C′的位似比;
(3)以位似中心O為坐標原點,以格線所在直線為坐標軸建立平面直角坐標系,畫出△A′B′C′關(guān)于點O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,以對角線BD為一邊構(gòu)造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.
(1)設(shè)Rt△CBD的面積為S1, Rt△BFC的面積為S2, Rt△DCE的面積為S3 , 則S1 S2+ S3(用“>”、“=”、“<”填空);
(2)寫出圖中的三對相似三角形,并選擇其中一對進行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.
(1)寫出A、C兩點的坐標;
(2)當0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;
(3)當1<m<2時,是否存在實數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com