【題目】如圖,在等邊△ABC中,點D、E分別在邊BC、AC上,且AE=CD,BE與 AD相交于點P,BQ⊥AD于點Q.
(1)求證: BE=AD
(2)求證:PQ=BP
【答案】(1)證明見解析;(2)證明見解析
【解析】
試題分析:(1)根據(jù)等邊三角形的性質(zhì)可得:AB=AC,∠BAC=∠ACB=60°,根據(jù)SAS可證△BAE≌ACD,根據(jù)全等三角形的性質(zhì)可證BE=AD;
(2)根據(jù)全等三角形對應(yīng)角相等可證∠ABE=∠CAD,根據(jù)三角形外角的性質(zhì)可證∠BPQ=∠ABE+∠BAD,所以可以求出∠PBQ=30°,根據(jù)直角三角形的性質(zhì)可證PQ=BP.
試題解析:(1)∵△ABC為等邊三角形
∴AB=AC,∠BAC=∠ACB=60°
在△BAE和△ACD中
∴△BAE≌ACD(SAS),
∴BE=AD;
(2)∵△BAE≌△ACD,
∴∠ABE=∠CAD.
∵∠BPQ為△ABP外角,
∴∠BPQ=∠ABE+∠BAD.
∴∠BPQ=∠CAD+∠BAD=∠BAC=60°,
∵BQ⊥AD,
∴∠PBQ=30°,
∴PQ=BP.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間5名工人日加工零件數(shù)分別為6,10,4,5,4,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A.4,5 B.5,4 C.6,4 D.10,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一直角三角形的木板,三邊的平方和為1800cm2,則斜邊長為( ).
A、80cm B、30cm C、90cm D、120cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列句子中不是命題的是( )
A. 兩直線平行,同位角相等 B. 將4開平方
C. 若|a|=|b|,則a2=b2 D. 同角的補角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列六種說法正確的個數(shù)是( )
①無限小數(shù)都是無理; ②正數(shù)、負數(shù)統(tǒng)稱有理數(shù); ③無理數(shù)的相反數(shù)還是無理數(shù);
④無理數(shù)與無理數(shù)的和一定還是無理數(shù); ⑤無理數(shù)與有理數(shù)的和一定是無理數(shù);
⑥ 有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com