【題目】已知關(guān)于a,b的多項(xiàng)式2(a2-2ab-b2)-(a2+mab+2b2).
(1)若合并后不含有ab項(xiàng),求m的值;
(2)在(1)的條件下,當(dāng)a=-3,b=時(shí),求代數(shù)式的值.
【答案】(1)m=-4;(2)8.
【解析】
(1)將m看做常數(shù),對原式合并同類項(xiàng),根據(jù)合并后不含有ab項(xiàng)知其系數(shù)為0,據(jù)此得出關(guān)于m的方程,解之可得答案;
(2)將a,b的值代入(1)中所得代數(shù)式計(jì)算可得.
解:(1)∵2(a2-2ab-b2)-(a2+mab+2b2)
=2a2-4ab-2b2-a2-mab-2b2
=a2-(4+m)ab-4b2,
∵合并后不含有ab項(xiàng),
∴4+m=0,
解得:m=-4.
(2)由(1)知,原式=a2-4b2,
當(dāng)a=-3,b=-時(shí),
原式=(-3)2-4×(-)2
=9-4×
=9-1
=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1所示,易證:OH= AD且OH⊥AD(不需證明)
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2,圖3所示位置時(shí),線段OH與AD又有怎樣的關(guān)系,并選擇一個(gè)圖形證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC的角平分線BD,CE相交于點(diǎn)P.
(1)如果∠A=80,求∠BPC= .
(2)如圖②,過點(diǎn)P作直線MN∥BC,分別交AB和AC于點(diǎn)M和N,試求∠MPB+∠NPC的度數(shù)(用含∠A的代數(shù)式表示) .
(3)將直線MN繞點(diǎn)P旋轉(zhuǎn)。
(i)當(dāng)直線MN與AB,AC的交點(diǎn)仍分別在線段AB和AC上時(shí),如圖③,試探索∠MPB,∠NPC,∠A三者之間的數(shù)量關(guān)系,并說明你的理由。
(ii)當(dāng)直線MN與AB的交點(diǎn)仍在線段AB上,而與AC的交點(diǎn)在AC的延長線上時(shí),如圖④,試問(i)中∠MPB,∠NPC,∠A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請說明你的理由;若不成立,請給出∠MPB,∠NPC,∠A三者之間的數(shù)量關(guān)系,并說明你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2個(gè)單位,一只烏龜從A點(diǎn)出發(fā)以2個(gè)單位/秒的速度順時(shí)針繞正方形運(yùn)動,另有一只兔子也從A點(diǎn)出發(fā)以6個(gè)單位/秒的速度逆時(shí)針繞正方形運(yùn)動,則第2018次相遇在( )
A. 點(diǎn)A B. 點(diǎn)B C. 點(diǎn)C D. 點(diǎn)D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是AB的中點(diǎn),點(diǎn)D是BC的中點(diǎn),現(xiàn)給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在暑期社會實(shí)踐活動中,以每千克0.8元的價(jià)格從批發(fā)市場購進(jìn)若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價(jià)0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示.請你根據(jù)圖象提供的信息完成以下問題:
(1)求降價(jià)前銷售金額y(元)與售出西瓜x(千克)之間的函數(shù)關(guān)系式.
(2)小明從批發(fā)市場共購進(jìn)多少千克西瓜?
(3)小明這次賣瓜賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形 ABC 的邊長為 3,過點(diǎn) B 的直線 l⊥AB,且△ABC 與△A′BC′關(guān)于直線 l 對稱,D 為線段 BC′上一動點(diǎn),則 AD+CD 的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com