【題目】如圖,已知RtABC的斜邊AB=8,AC=4.以點C為圓心作圓,當(dāng)⊙C與邊AB只有一個交點時,則⊙C的半徑的取值范圍是_____

【答案】r=2或4<r≤4

【解析】

CDABD如圖,利用勾股定理計算出BC=4,再利用面積法計算出CD=2討論當(dāng)⊙CAB相切時得到r=2;當(dāng)直線AB與⊙C相交且邊AB與⊙O只有一個交點時,CArCB

CDABD,如圖,在RtABCBC==4

CDAB=ACBC,CD==2當(dāng)⊙CAB相切時,r=2;

當(dāng)直線AB與⊙C相交,且邊AB與⊙O只有一個交點時,4r4

綜上所述當(dāng)r=24r4,C與邊AB只有一個公共點

故答案為:r=24r4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(﹣10),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個根是x1=1,x2=3

③3a+c0

當(dāng)y0時,x的取值范圍是﹣1≤x3

當(dāng)x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:

①abc0,

②a﹣b+c0,

③2a=b,

④4a+2b+c0,

若點(﹣2,)和(,)在該圖象上,則

其中正確的結(jié)論是 (填入正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx與一次函數(shù)y=﹣x+7的圖象交于點A,x軸上有一點P(a,0)

1)求點A的坐標(biāo);

2)若OAP為等腰三角形,則a   ;

3)過點Px軸的垂線(垂線位于點A的右側(cè))、分別交yxy=﹣x+7的圖象于點BC,連接OC.若BCOA,求OBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知:如圖1,在RtABCRtA′B′C′中,AB=A′B′AC=A′C′,∠C=C′=90°.求證:RtABCRtA′B′C′全等.

1)請你用如果,那么…”的形式敘述上述命題;

2)如圖2,將ABCA′B′C′拼在一起(即:點A與點B′重合,點B與點A′重合),BCB′C′相交于點O,請用此圖證明上述命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙走完全程用了30分鐘;③乙用12分鐘追上甲;④乙到達(dá)終點時,甲離終點還有360米;其中正確的結(jié)論有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市對進貨價為10元/千克的某種蘋果的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.

(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);

(2)應(yīng)怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案