【題目】甲、乙兩車從地出發(fā),勻速駛向地,甲車行駛后,乙車才以的速度沿相同路線行駛,乙車先到達(dá)地并停留后,再以原速按原路返回,直至與甲車相遇,在此過程中,兩車之間的距離與乙車行駛時間之間的函數(shù)關(guān)系如圖所示,下列說法:①;②;③點(diǎn)的坐標(biāo)是;④,其中正確的有( )
A.4個B.3個C.2個D.1個
【答案】C
【解析】
設(shè)甲車的速度為,由圖像可知時乙開始出發(fā),此時甲乙相距千米,所以為乙出發(fā)時甲所走的路程;當(dāng)時,甲乙間距離減小,到時,甲乙間距離0,說明乙追上甲,由相遇時甲乙所走路程相同可求出v的值; 時甲乙間距離增大,乙超過甲,在時,距離最大為90km,由此可求出b的值;乙車在B地停留到點(diǎn)H,求出此時甲乙的距離即為H點(diǎn)縱坐標(biāo);再以原速返回,在時,距離再次為0,甲乙相遇,求出從乙開始返回到相遇所需時間,可得c的值.
解:設(shè)甲車的速度為,則,解得,,①正確;,解得,②正確;因?yàn)橐臆嚨竭_(dá)地并停留,所以H點(diǎn)的橫坐標(biāo)為5.5,甲在乙停留的時間走的路程為,,所以此時甲乙相距60km,即點(diǎn)H的縱坐標(biāo)為60,所以點(diǎn)的坐標(biāo)是,③錯誤;由③知此時甲乙相距60km,設(shè)t時后甲乙相遇,則,解得,所以,④錯誤,其中正確的有兩個.
故選:C
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動程序,開機(jī)加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫(℃)與開機(jī)后用時(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動開機(jī),重復(fù)上述自動程序.若在水溫為30℃時,接通電源后,水溫y(℃)和時間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(8:45)能喝到不超過50℃的水,則接通電源的時間可以是當(dāng)天上午的
A.7:20 B.7:30 C.7:45 D.7:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)CD:與一次函數(shù)AB:,都經(jīng)過點(diǎn)B(-1,4).
(1)求兩條直線的解析式;
(2)求四邊形ABDO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,是關(guān)于的方程的兩實(shí)根,實(shí)數(shù)、、、的大小關(guān)系可能是( )
A. α<a<b<β B. a<α<β<b C. a<α<b<β D. α<a<β<b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃建一間多功能數(shù)學(xué)實(shí)驗(yàn)室,將采購兩類桌椅:A類是三角形桌,每桌可坐3人,B類是五邊形桌,每桌可坐5人.學(xué)校擬選擇甲、乙兩家公司中的一家來采購,兩家公司的標(biāo)價均相同,且規(guī)定兩類桌椅均只能在同一家公司采購.甲公司對兩類桌椅均是以標(biāo)價出售;乙公司對A類桌椅漲價20%、B類桌椅降價20%出售.經(jīng)咨詢,兩家公司給出的數(shù)量和費(fèi)用如下表:
A類桌椅(套) | B類桌椅(套) | 總費(fèi)用(元) | |
甲公司 | 6 | 5 | 1900 |
乙公司 | 3 | 7 | 1660 |
(1)求第一次購買時,A、B兩類桌椅每套的價格分別是多少?
(2)如果該數(shù)學(xué)實(shí)驗(yàn)室需設(shè)置48個座位,學(xué)校到甲公司采購,應(yīng)分別采購A、B兩類桌椅各多少套時所需費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3.
(1)求拋物線所對應(yīng)的函數(shù)解析式.
(2)若點(diǎn)P為拋物線對稱軸上的一個動點(diǎn),求PAC周長的最小值.
(3)將AOC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,點(diǎn)A對應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2018年韶關(guān)市開展的“善美韶關(guān)情暖三江”的志愿者系列括動中,某志愿者組織籌集了部分資金,計(jì)劃購買甲、乙兩種書包若干個送給貧困山區(qū)的學(xué)生,已知每個甲種書包的價格比每個乙種書包的價格貴10元,用350元購買甲種書包的個數(shù)恰好與用300元購買乙種書包的個數(shù)相同,求甲、乙兩種書包每個的價格各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是ts.過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)N(0,6),點(diǎn)M在x軸負(fù)半軸上,ON=3OM.A為線段MN上一點(diǎn),AB⊥x軸,垂足為點(diǎn)B,AC⊥y軸,垂足為點(diǎn)C.
(1)寫出點(diǎn)M的坐標(biāo);
(2)求直線MN的表達(dá)式;
(3)若點(diǎn)A的橫坐標(biāo)為-1,求矩形ABOC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com