【題目】如圖,已知點G在正方形ABCD的對角線AC上,,垂足為點E,,垂足為點F.
發(fā)現(xiàn)問題:在圖中,的值為______.
探究問題:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)角,如圖所示,探究線段AG與BE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
解決問題:正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F三點在一條直線上時,如圖所示,延長CG交AD于點H;若,,直接寫出BC的長度.
【答案】(1);(2),證明見詳解;(3).
【解析】
由正方形的性質(zhì)可得,,可證,,可得,由平行線分線段成比例可得;
由正方形的性質(zhì)可得,即可證∽,可得,則;
過點H作于點M,構(gòu)造等腰,利用HG的長度分別求出HM,GM,AH的長度,再利用與相似即可求出AC的長度,進一步求出BC的長度.
解:四邊形ABCD是正方形,
,,
,
,,
,
,
,
,
故答案為:;
,
理由如下:
如圖,四邊形ABCD,四邊形GECF是正方形,
,,
,,
,
,,
,且,
∽,
,
即,
如圖,過點H作于點M
四邊形ABCD,四邊形GECF是正方形,
,,
,
為等腰直角三角形,
,
,
在中,
,
,且
∽
,
即,
,
在中,
,
的長度為.
故答案為:(1);(2),證明見詳解;(3).
科目:初中數(shù)學 來源: 題型:
【題目】某華為手機專賣店銷售臺A型手機和臺B型手機的利潤為元,銷售A型手機和臺B型手機的利潤為元.
求每臺A型手機和B型手機的利潤;
專賣店計劃購進兩種型號的華為手機共臺,其中B型手機的進貨量不低于A型手機的倍,設(shè)購進的A型手機臺,這臺手機全部銷售的總利潤為元.
②直接寫出關(guān)于的函數(shù)關(guān)系式為 ,的取值范圍是 ;
②該商店如何進貨才能使銷售總利潤最大?說明原因.
專賣店預(yù)算員按照中的方案準備進貨,同時專賣店對A型手機銷售價格下調(diào)元,結(jié)果預(yù)算員發(fā)現(xiàn)無論按照哪種進貨方案最后銷售總利潤不變,請你直接寫出的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.
(1)求每個排球和籃球的價格:
(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設(shè)排球的個數(shù)為m,總費用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學校按怎樣的方案購買時,費用最低?最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,A、B、C、D為矩形的四個頂點,AD=4cm,AB=dcm。動點E、F分別從點D、B出發(fā),點E以1 cm/s的速度沿邊DA向點A移動,點F以1 cm/s的速度沿邊BC向點C移動,點F移動到點C時,兩點同時停止移動。以EF為邊作正方形EFGH,點F出發(fā)xs時,正方形EFGH的面積為ycm2。已知y與x的函數(shù)圖象是拋物線的一部分,如圖2所示。請根據(jù)圖中信息,解答下列問題:
(1)自變量x的取值范圍是 ▲ ;
(2)d= ▲ ,m= ▲ ,n= ▲ ;
(3)F出發(fā)多少秒時,正方形EFGH的面積為16cm2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠C=90°,以AB為直徑的⊙O交AD于點E,CD=ED,連接BD交⊙O于點F.
(1)求證:BC與⊙O相切;
(2)若BD=10,AB=13,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象分別交x軸、y軸于A、B兩點,且與反比例函數(shù)的圖象在第一象限交于點C(4,n),CD⊥x軸于D.
(1)求m、n的值,并在給定的直角坐標系中作出一次函數(shù)的圖象;
(2)如果點P、Q分別從A、C兩點同時出發(fā),以相同的速度沿線段AD、CA向D、A運動,設(shè)AP=k.
①k為何值時,以A、P、Q為頂點的三角形與△AOB相似?
②k為何值時,△APQ的面積取得最大值并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四川省蘆山縣4月20日發(fā)生了7.0級強烈地震,政府為了盡快搭建板房安置災(zāi)民,給某廠下達了生產(chǎn)A種板材48000m2和B種板材24000m2的任務(wù).
⑴如果該廠安排280人生產(chǎn)這兩種板材,每人每天能生產(chǎn)A種板材60 m2或B種板材40 m2,請問:應(yīng)分別安排多少人生產(chǎn)A種板材和B種板材,才能確保同時完成各自的生產(chǎn)任務(wù)?
⑵某災(zāi)民安置點計劃用該廠生產(chǎn)的兩種板材搭建甲、乙兩種規(guī)格的板房共400間,已知建設(shè)一間甲型板房和一間乙型板房所需板材及安置人數(shù)如下表所示:
板房 | A種板材(m2) | B種板材(m2) | 安置人數(shù) |
甲型 | 110 | 61 | 12 |
乙型 | 160 | 53 | 10 |
①共有多少種建房方案可供選擇?
②若這個災(zāi)民安置點有4700名災(zāi)民需要安置,這400間板房能否滿足需要?若不能滿足請說明理由;若能滿足,請說明應(yīng)選擇什么方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC 頂點 A(2,3).若以原點 O 為位似中心,畫三角形 ABC
的位似圖形△A′B′C′,使△ABC 與△A′B′C′的相似比為,則 A′的坐標為( )
A. (3, ) B. ( ,6) C. (3, )或(-3,- ) D. ( ,6)或(- ,-6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現(xiàn)在從中任意摸出一個紅球的概率為.
(1)求袋中黃球的個數(shù);
(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com