(本題滿分12分)
如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

(1)拋物線的解析式為y=x2+2x-3 (2)點(diǎn)坐標(biāo)為(-1,-4)(3)點(diǎn)Q的坐標(biāo)為(-2,-3)

解析試題分析:解:(1)把A(1,0),B(0,-3)代入y=x2+bx-3a中,得

解得
∴拋物線的解析式y=x2+2x-3
(2)令y=0,得x2+2x-3=0,
解得x1=-3,x2=1
∴點(diǎn)C(-3,0)
B(0,-3)
∴△BOC為等腰直角三角形.
∴∠CBO=45°過點(diǎn)PPDy軸,垂足為D,
PBBC,∴∠PBD=45°∴PD=BD
所以可設(shè)點(diǎn)Px,-3+x
則有-3+x=x2+2x-3,∴x=-1,所以P點(diǎn)坐標(biāo)為(-1,-4)
(3)由(2)知,BCBP
當(dāng)BP為直角梯形一底時(shí),由圖象可知點(diǎn)Q不可能在拋物線上.
BC為直角梯形一底,BP為直角梯形腰時(shí),
B(0,-3),C(-3,0),
∴直線BC的解析式為y=-x-3
∵直線PQBC,且P(-1,-4),
∴直線PQ的解析式為y=-(x+1)-3-1即y=-x-5            
聯(lián)立方程組得
解得x1=-1,x2=-2
x=-2,y=-3,即點(diǎn)Q(-2,-3)
∴符合條件的點(diǎn)Q的坐標(biāo)為(-2,-3)
考點(diǎn):二次函數(shù)
點(diǎn)評(píng):本題難度較大。主要考查學(xué)生對(duì)幾種函數(shù)的綜合運(yùn)用。是中考的?碱}型,復(fù)習(xí)備考時(shí)應(yīng)加強(qiáng)訓(xùn)練。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長;

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在邊長為2的正方形ABCD中,PAB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQt(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過QQEAB于點(diǎn)E,過MMFBC于點(diǎn)F
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖,的頂點(diǎn)A、B在二次函數(shù)的圖像上,又點(diǎn)A、B[分別在軸和軸上,ABO

1.(1)求此二次函數(shù)的解析式;(4分)

2.

 

 
(2)過點(diǎn)交上述函數(shù)圖像于點(diǎn),

點(diǎn)在上述函數(shù)圖像上,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo).(8分)

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題

(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。

⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;

⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題

(本題滿分12分)

如圖,直角梯形ABCD中,ABDC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線lAD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).

(1)當(dāng)時(shí),求線段的長;

(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;

(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案