若函數(shù)y=
kx
中,當(dāng)x=2時,y=-3,則函數(shù)解析式是
 
分析:用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式.
解答:解:把x=2,y=-3代入y=
k
x
中得,k=-6,
所以函數(shù)解析式是y=-
6
x

故答案為:y=-
6
x
點評:本題主要考查了用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直線y=-x-5交x軸于A,交y軸于B,點P(0,-1),D是線段AB上一動點,DC⊥y軸于點C,反比例函數(shù)y=
kx
的圖象經(jīng)過點D.
(1)若C為BP的中點,求k的值.
精英家教網(wǎng)
(2)DH⊥DC交OA于H,若D點的橫坐標(biāo)為x,四邊形DHOC的面積為y,求y與x之間的函數(shù)關(guān)系式.
精英家教網(wǎng)
(3)將直線AB沿y軸正方向平移a個單位(a>5),交x軸、y軸于E、F點,G為y軸負(fù)半軸上一點,G(0,-a+5),點M、N以相同的速度分別從E、G兩點同時出發(fā),沿x軸、y軸向點O運(yùn)動(不到達(dá)O點),同時靜止,連接并延長FM交EN于K,連接OK、MN,當(dāng)M、N兩點在運(yùn)動過程中以下兩個結(jié)論:①∠EFM=∠MNK;②∠FMO=∠OKN,其中只有一個結(jié)論是正確的,請判斷并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一矩形OABC放在直角坐標(biāo)系中,O為坐標(biāo)原點.點A在y軸正半軸上.點E是邊AB上的一個動點(不與點A、B重合),過點E的反比例函數(shù)y=
kx
(x>0)
的圖象與邊BC交于點F.
(1)若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求k的值.
(2)若OA=2,OC=4,當(dāng)四邊形AOFE的面積最大時,求點E、F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•西寧)如圖,正方形AOCB在平面直角坐標(biāo)系xoy中,點O為原點,點B在反比例函數(shù)y=
k
x
(x>0)圖象上,△BOC的面積為8.
(1)求反比例函數(shù)y=
k
x
的關(guān)系式;
(2)若動點E從A開始沿AB向B以每秒1個單位的速度運(yùn)動,同時動點F從B開始沿BC向C以每秒2個單位的速度運(yùn)動,當(dāng)其中一個動點到達(dá)端點時,另一個動點隨之停止運(yùn)動.若運(yùn)動時間用t表示,△BEF的面積用S表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動時間t取何值時,△BEF的面積最大?
(3)當(dāng)運(yùn)動時間為
4
3
秒時,在坐標(biāo)軸上是否存在點P,使△PEF的周長最小?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法:①當(dāng)m>1時,分式
1
x2-2x+m
總有意義;②若反比例函數(shù)y=
k
x
的圖象經(jīng)過點(
-m
33m
),則在每個分支內(nèi)y隨著x的增大而增大;③關(guān)于x的方程
x
x-3
-2=
m
x-3
有正數(shù)解,則m<6;④在Rt△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,AB邊上的高CD=h,那么以
1
a
、
1
b
1
h
長為邊的三角形是直角三角形.其中正確的結(jié)論的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案