【題目】已知a、b、c滿足: (1)5(a+3)+2|b2|=0 (2)xy+2ab+c+1是七次多項式;

求多項式ab[ab(2abcac3ab)4ac]abc的值..

【答案】原式=3ac -3ab+abc,-75

【解析】

利用非負數(shù)的性質(zhì)及單項式次數(shù)的定義求出a,b,c的值,化簡原式代入求值即可.

解:∵5(a+3)+2|b2|=0,且(a+3) 0,|b2|0

5(a+3)=0,2|b2|=0

a=-3,b=2

xy+2ab+c+1是七次多項式

2-a+1+b+c=7

c=-1.

ab[ab(2abcac3ab)4ac]abc

=ab(ab2abc+ac+3ab4ac)abc

= ab(4ab2abc3ac)abc

= ab4ab+2abc+3acabc

= 3ac -3ab+abc

a=-3,b=2c=-1

原式=3×(-3)2×(-1)-3×(-3)2×2+ (-3)×2×(-1)=-75.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在正方形ABCD中,點E、FBD上,且ABBEDF

(1)求證:四邊形AECF是菱形;

(2)若正方形的邊長為2,求四邊形AECF的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有AB、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達C地的過程中,甲、乙兩車各自與C地的距離ykm)與甲車行駛時間th)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達C地時,兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊無縫隙地放在一個底面為矩形(長為15cm,寬為12cm)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.

(1)從A、D、E、F四個點中任意取一點,以所取的這一點及點B、C為頂點畫三角形,則所畫三角形是等腰三角形的概率是  ;

(2)從A、D、E、F四個點中先后任意取兩個不同的點,以所取的這兩點及點B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率。(用樹狀圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ABCD中,放入6個形狀和大小都相同的小長方形,已知小長方形的長為a,寬為b,且ab

(1)用含a、b的代數(shù)式表示長方形ABCD的長AD、寬AB;

(2)用含ab的代數(shù)式表示陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點分別在軸的正半軸上,頂點的坐標為.點是邊上的一個動點(不與重合),反比例函數(shù)的圖象經(jīng)過點且與邊交于點,連接

(1)當點是邊的中點時,求點坐標(用含式子表示)

(2)在點的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角板中的兩個直角頂點重合在一起,即按如圖所示的方式疊放在一起,其中∠A60°,∠B30,∠D45°.

1)若∠BCD45°,求∠ACE的度數(shù).

2)若∠ACE150°,求∠BCD的度數(shù).

3)由(1)、(2)猜想∠ACE與∠BCD存在什么樣的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸。圖中點A表示-10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位,動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢復原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢復原速,設運動的時間為t秒,問:

1)動點P從點A運動至點C需要________秒;

2P、Q兩點相遇時,求出相遇點M所對應的數(shù)是多少?

3)求當t為何值時,PO兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

同步練習冊答案