【題目】在平面直角坐標(biāo)系中,一次函數(shù)yx+4的圖象與x軸和y軸分別交于A、B兩點(diǎn).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O作勻速運(yùn)動(dòng),到達(dá)點(diǎn)O即停止運(yùn)動(dòng).其中A、Q兩點(diǎn)關(guān)于點(diǎn)P對(duì)稱,以線段PQ為邊向上作正方形PQMN.設(shè)運(yùn)動(dòng)時(shí)間為秒.如圖①.
(1)當(dāng)t=2秒時(shí),OQ的長(zhǎng)度為 ;
(2)設(shè)MN、PN分別與直線yx+4交于點(diǎn)C、D,求證:MC=NC;
(3)在運(yùn)動(dòng)過(guò)程中,設(shè)正方形PQMN的對(duì)角線交于點(diǎn)E,MP與QD交于點(diǎn)F,如圖2,求OF+EN的最小值.
【答案】(1)2;(2)證明見(jiàn)解析;(3).
【解析】
(1)解方程得到OA=6,由t=2,于是得到結(jié)論;
(2)根據(jù)AP=PQ=t,得到OQ=6-2t,根據(jù)正方形的性質(zhì)得到PQ=QM=MN=PN=t,求得M(6-2t,t),N(6-t,t),C(6-t,t),求得CM=(6-t)-(6-2t)=t,CN=(6-t)-(6-t)=t,于是得到結(jié)論;
(3)作矩形NEFK,則EN=FK,推出當(dāng)O,F,K三點(diǎn)共線時(shí),OF+EN=OF+FK的值最小,如圖,作OH⊥QN于H,解直角三角形即可得到結(jié)論.
(1)在yx+4中,令y=0,得x=6,∴OA=6.
∵t=2,∴AP=PQ=2,
∴OQ=6﹣2﹣2=2.
故答案為:2;
(2)∵AP=PQ=t,∴OQ=6﹣2t.
∵四邊形PQMN是正方形,
∴PQ=QM=MN=PN=t,
∴M(6﹣2t,t),N(6﹣t,t),C(6t,t),
∴CM=(6t)﹣(6﹣2t)t,
CN=(6﹣t)﹣(6t)t,
∴CM=CN;
(3)作矩形NEFK,則EN=FK.
∵OF+EN=OF+FK,
∴當(dāng)O,F,K三點(diǎn)共線時(shí),OF+EN=OF+FK的值最小,如圖,
作OH⊥QN于H,
在等腰直角三角形PQN中,∵PQ=t,∴QNt,
∴HN=QN﹣QHt﹣(t﹣3)=3,
∴OF+EN的最小值為:HE+EN=HN=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若把不等式組的解集在數(shù)軸上表示出來(lái),則其對(duì)應(yīng)的圖形為
A. 長(zhǎng)方形 B. 線段 C. 射線 D. 直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蘇果超市用5000元購(gòu)進(jìn)一批新品種的蘋果進(jìn)行試銷,由于試銷狀況良好,超市又調(diào)撥11000元資金購(gòu)進(jìn)該種蘋果,但這次的進(jìn)價(jià)比試銷時(shí)每千克多了0.5元,購(gòu)進(jìn)蘋果的數(shù)量是試銷時(shí)的2倍。
(1)試銷時(shí)該品種蘋果的進(jìn)價(jià)是每千克多少元?
(2)如果超市將該品種的蘋果按每千克7元定價(jià)出售,當(dāng)大部分蘋果售出后,余下的400千克按定價(jià)的七折售完,那么超市在這兩次蘋果銷售中共盈利多少元?(7分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA=OB,△OAB的面積是2.
(1)求線段OB的中點(diǎn)C的坐標(biāo).
(2)連結(jié)AC,過(guò)點(diǎn)O作OE⊥AC于E,交AB于點(diǎn)D.
①直接寫出點(diǎn)E的坐標(biāo).
②連結(jié)CD,求證:∠ECO=∠DCB;
(3)點(diǎn)P為x軸上一動(dòng)點(diǎn),點(diǎn)Q為平面內(nèi)一點(diǎn),以點(diǎn)A.C.P.Q為頂點(diǎn)作菱形,直接寫出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某星期天,八(1)班開(kāi)展社會(huì)實(shí)踐活動(dòng),第一小組花90元從蔬菜批發(fā)市場(chǎng)批發(fā)了黃瓜和茄子共40kg,到蔬菜市場(chǎng)去賣,黃瓜和茄子當(dāng)天的批發(fā)價(jià)與零售價(jià)如表所示:
品名 | 黃瓜 | 茄子 |
批發(fā)價(jià)/(元/kg) | 2.4 | 2 |
零售價(jià)/(元/kg) | 3.6 | 2.8 |
(1)黃瓜和茄子各批發(fā)了多少kg?
(2)該小組當(dāng)天賣完這些黃瓜和茄子可賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:yx與直線l:y=kx+b相交于點(diǎn)A(a,3),直線交l交y軸于點(diǎn)B(0,﹣5).
(1)求直線l的解析式;
(2)將△OAB沿直線l翻折得到△CAB(其中點(diǎn)O的對(duì)應(yīng)點(diǎn)為點(diǎn)C),求證:AC∥OB;
(3)在直線BC下方以BC為邊作等腰直角三角形BCP,直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(x1,0)、(2,0),且﹣2<x1<﹣1,與y軸正半軸的交點(diǎn)在(0,2)的下方,則下列結(jié)論:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
則其中正確結(jié)論的序號(hào)是
A. ①② B. ②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.下列結(jié)論:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正確的個(gè)數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE,PF分別交邊AB,AC于點(diǎn)E,F,當(dāng)∠EPF在△ABC所在平面內(nèi)繞頂點(diǎn)P轉(zhuǎn)動(dòng)時(shí)(點(diǎn)E不與A,B重合),給出以下四個(gè)結(jié)論:①△PFA≌△PEB②EF=AP③△PEF是等腰直角三角形④S四邊形AEPFS△ABC,上述結(jié)論中始終正確有______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com