【題目】某工廠加工齒輪,已知每1塊金屬原料可以加工成3個(gè)A齒輪或4個(gè)B齒輪(說明:每塊金屬原料無法同時(shí)既加工A齒輪又加B齒輪),已知1個(gè)A齒輪和2個(gè)B齒輪組成一個(gè)零件,為了加工更多的零件,要求AB齒輪恰好配套.請列方程解決下列問題:

1)現(xiàn)有25塊相同的金屬原料,問最多能加工多少個(gè)這樣的零件?

2)若把36塊相同的金屬原料全部加工完,問加工的A、B齒輪恰好配套嗎?說明理由

3)若把n塊相同的金屬原料全部加工完,為了使這樣加工出來的A、B齒輪恰好配套,請求出n所滿足的條件.

【答案】130;(2)不能恰好配套,理由見解析;(3n5的正整數(shù)倍的數(shù).

【解析】

1)設(shè)用x塊金屬原料加工A齒輪,則用(25x)塊金屬原料加工B齒輪,根據(jù)題意列出一元一次方程,故可求解;

2)設(shè)用y塊金屬原料加工A齒輪,則用(36y)塊金屬原料加工B齒輪,依題意列出方程求解,得到解不是整數(shù),即可判斷;

3)設(shè)用a塊金屬原料加工A齒輪,則用(na)塊金屬原料加工B齒輪,根據(jù)配套列出方程即可求解.

解:(1)設(shè)用x塊金屬原料加工A齒輪,則用(25x)塊金屬原料加工B齒輪.

由題意,可得2×3x425x

解得x10,則3×1030

答:最多能加工30個(gè)這樣的零件;

2)若把36塊相同的金屬原料全部加工完,加工的A、B齒輪不能恰好配套.理由如下:設(shè)用y塊金屬原料加工A齒輪,則用(36y)塊金屬原料加工B齒輪.

由題意,可得2×3y436y),

解得y14.4.由于14.4不是整數(shù),不合題意舍去,

所以若把36塊相同的金屬原料全部加工完,加工的A、B齒輪不能恰好配套;

3)設(shè)用a塊金屬原料加工A齒輪,則用(na)塊金屬原料加工B齒輪,可使這樣加工出來的AB齒輪恰好配套.

由題意,可得2×3a4na),

解得an,則nan,

n所滿足的條件是:n5的正整數(shù)倍的數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,DBC的中點(diǎn),EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長線于點(diǎn)F.

1)求證:△AEF≌△DEB;

2)求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動到點(diǎn)C,過點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動時(shí)間為x(s).

(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;

(2)在動點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)C過程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;

(3)如圖(2),另有一動點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動到點(diǎn)C,過點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列解題過程,然后解答問題⑴、⑵,解方程:

解:①當(dāng)3x0時(shí),原方程可化為一元一次方程3x=1,它的解是

②當(dāng)3x0時(shí),原方程可化為一元一次方程-3x=1,它的解是。

⑴請你根據(jù)以上理解,解方程:;

⑵探究:當(dāng)b為何值時(shí),方程,①無解;②只有一個(gè)解;③有兩個(gè)解。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:一組鄰邊相等且對角互補(bǔ)的四邊形叫作完美四邊形

1)在①平行四邊形,②菱形,③矩形,④正方形中,一定為完美四邊形的是 (請?zhí)钚蛱枺?/span>

2)在完美四邊形ABCD中,AB=AD,∠B+D=180°,連接AC

①如圖1,求證:AC平分∠BCD;

小明通過觀察、實(shí)驗(yàn),提出以下兩種想法,證明AC平分∠BCD

想法一:通過∠B+D=180°,可延長CBE,使BE=CD,通過證明△AEB≌△ACD,從而可證AC平分∠BCD

想法二:通過AB=AD,可將△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使ADAB重合,得到△AEB,可證C,B,E三點(diǎn)在條直線上,從而可證AC平分∠BCD.

請你參考上面的想法,幫助小明證明AC平分∠BCD;

②如圖2,當(dāng)∠BAD=90°,用等式表示線段AC,BC,CD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:若關(guān)于x的一元一次方程ax=b的解為b+a,則稱該方程為“和解方程”. 例如:方程2x=﹣4的解為x=﹣2,而﹣2=﹣4+2,則方程2x=﹣4為“和解方程”.

請根據(jù)上述規(guī)定解答下列問題:

(1)已知關(guān)于x的一元一次方程3x=m是“和解方程”,求m的值;

(2)已知關(guān)于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)AB是數(shù)軸上的兩點(diǎn).點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位的速度向點(diǎn)B作勻速運(yùn)動;同時(shí),點(diǎn)Q也從原點(diǎn)出發(fā)用2s到達(dá)點(diǎn)A處,并在A處停留2s,然后按原速度向點(diǎn)B運(yùn)動,速度為每秒4個(gè)單位.最終,點(diǎn)Q比點(diǎn)P2s到達(dá)B.設(shè)點(diǎn)P運(yùn)動的時(shí)間為ts.

1)點(diǎn)A表示的數(shù)為 ;當(dāng)t=4s時(shí),P、Q兩點(diǎn)之間的距離為 個(gè)單位長度;

2)求點(diǎn)B表示的數(shù);

3)從P、Q兩點(diǎn)同時(shí)出發(fā)至點(diǎn)P到達(dá)點(diǎn)B處的這段時(shí)間內(nèi),t為何值時(shí),PQ兩點(diǎn)相距3個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)EF分別在BCCD上.下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正確結(jié)論的序號是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,我市城市居民用電收費(fèi)方式有以下兩種:

普通電價(jià)付費(fèi)方式:全天0. 52元/度;

峰谷電價(jià)付費(fèi)方式:峰時(shí)(早8:00~晚21:00)0. 65元/度;谷時(shí)(晚21:00~早8:00)0. 40元/度.

(1)小麗老師家10月份總用電量為280度.

①若其中峰時(shí)電量為80度,則小麗老師家按照哪種方式付電費(fèi)比較合適?能省多少元?

②若小麗老師交費(fèi)137元,那么,小麗老師家峰時(shí)電量為多少度?

(2)到11月份付費(fèi)時(shí),小麗老師發(fā)現(xiàn)11月份總用電量為320度,用峰谷電價(jià)付費(fèi)方式比普通電價(jià)付費(fèi)方式省了18. 4元,那么,11月份小麗老師家峰時(shí)電量為多少度?

查看答案和解析>>

同步練習(xí)冊答案