【題目】計(jì)算:
(1)22+(﹣4)+(﹣2)+4
(2)(﹣ +1 ﹣ )×(﹣24)
(3)3﹣6÷(﹣2)×|﹣ |
(4)2a﹣(3b﹣a)+b
(5)3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)
(6)(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3 .
【答案】
(1)解:22+(﹣4)+(﹣2)+4=20
(2)解:(﹣ +1 ﹣ )×(﹣24)
=18﹣44+21
=﹣5;
(3)解:3﹣6÷(﹣2)×|﹣ |
=3+3×
=3+1.5
=4.5
(4)解:2a﹣(3b﹣a)+b
=2a﹣3b+a+b
=3a﹣2b
(5)解:3(x2﹣y2)+(y2﹣z2)﹣2(z2﹣y2)
=3x2﹣3y2+y2﹣z2﹣2z2+2y2
=3x2﹣3z2
(6)解:(﹣ )×(﹣4)2﹣0.25×(﹣5)×(﹣4)3
=(﹣ )×16﹣0.25×(﹣5)×(﹣64)
=﹣10﹣80
=﹣90.
【解析】(1)根據(jù)有理數(shù)加法法則計(jì)算即可;(2)利用乘法分配律計(jì)算即可;(3)先化簡絕對值,再算乘除,最后計(jì)算加法即可;(4)(5)先去括號,再合并同類項(xiàng)即可;(6)先算乘方,再算乘法,最后算加減.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解有理數(shù)的四則混合運(yùn)算(在沒有括號的不同級運(yùn)算中,先算乘方再算乘除,最后算加減),還要掌握整式加減法則(整式的運(yùn)算法則:(1)去括號;(2)合并同類項(xiàng))的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師給出一個(gè)二次函數(shù),甲、乙、丙三名同學(xué)各指出這個(gè)函數(shù)的一個(gè)性質(zhì).
甲:函數(shù)圖象的頂點(diǎn)在x軸上;
乙:當(dāng)x<1時(shí),y隨x的增大而減;
丙:該函數(shù)的形狀與函數(shù)y=x2的圖象相同
已知這三位同學(xué)的描述都正確,請你寫出滿足上述所有性質(zhì)的一個(gè)二次函數(shù)表達(dá)式_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的發(fā)展,互聯(lián)網(wǎng)消費(fèi)逐漸深入人們生活,如圖是“滴滴順風(fēng)車”與“滴滴快車”的行駛里程x(公里)與計(jì)費(fèi)y(元)之間的函數(shù)關(guān)系圖象,下列說法:
(1)“快車”行駛里程不超過5公里計(jì)費(fèi)8元;
(2)“順風(fēng)車”行駛里程超過2公里的部分,每公里計(jì)費(fèi)1.2元;
(3)A點(diǎn)的坐標(biāo)為(6.5,10.4);
(4)從哈爾濱西站到會(huì)展中心的里程是15公里,則“順風(fēng)車”要比“快車”少用3.4元,其中正確的個(gè)數(shù)有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在運(yùn)動(dòng)會(huì)徑賽中,甲、乙同時(shí)起跑,剛跑出200m,甲不慎摔倒,他又迅速地爬起來繼續(xù)投入比賽,若他們所跑的路程y(m)與比賽時(shí)間x(s)的關(guān)系如圖,有下列說法:①他們進(jìn)行的是800m比賽;②乙全程的平均速度為6.4m/s;③甲摔倒之前,乙的速度快;④甲再次投入比賽后的平均速度為7.5m/s;⑤甲再次投入比賽后在距離終點(diǎn)300米時(shí)追上了乙.其中正確的個(gè)數(shù)有( 。
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的多項(xiàng)式 ,其中a,b,c,d為互不相等的整數(shù),且 abcd=4 .
(1)求 a+b+c+d 的值.
(2)當(dāng) x=1 時(shí),這個(gè)多項(xiàng)式的值為64,求e的值.
(3)當(dāng) x=1 時(shí),求這個(gè)多項(xiàng)式的所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負(fù)整數(shù),b是多項(xiàng)式2m2n﹣m3n2﹣m﹣2的次數(shù),c是單項(xiàng)式﹣2xy2的系數(shù),且a、b、c分別是點(diǎn)A、B、C在數(shù)軸上對應(yīng)的數(shù).
(1)求a、b、c的值,并在數(shù)軸上標(biāo)出點(diǎn)A、B、C.
(2)若動(dòng)點(diǎn)P、Q同時(shí)從A、B出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),點(diǎn)P的速度是每秒 個(gè)單位長度,點(diǎn)Q的速度是每秒2個(gè)單位長度,求運(yùn)動(dòng)幾秒后,點(diǎn)Q可以追上點(diǎn)P?
(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)M到A、B、C三點(diǎn)的距離之和等于10,請直接寫出所有點(diǎn)M對應(yīng)的數(shù).(不必說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com